Math, asked by Anonymous, 4 months ago

Help me with this, please....
✒___No SPAM​

Attachments:

akhilesh9261: hi

Answers

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf Given :  -  \begin{cases} &\sf{ \alpha  \: and \:  \beta  \: are \: roots \: of \:  {x}^{2}  - 2x + A = 0} \\ &\sf{ \gamma  \: and  \: \delta \: are \: the \: roots \: of \:  {x}^{2}  - 18x + B = 0}\\ &\sf{ \alpha, \beta , \gamma ,\delta, \: are \: in \: AP } \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To Find -  \begin{cases} &\sf{valuesof \: A \: and \: B}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline \red{Step :- 1}

\bf \: \red{According \:  to  \: statement }

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  ⟼ \alpha , \beta , \gamma ,\delta \: are \: in \: AP

\bf\implies \: \alpha  = a - 3d

\bf\implies \: \beta  = a - d

\bf\implies \: \gamma  = a + d

\bf\implies \:\delta = a + 3d

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline \red{Step :- 2}

\sf \:  ⟼\alpha  \: and \:  \beta  \: are \: roots \: of \:  {x}^{2}  - 2x + A = 0

\bf\implies \: \alpha  +  \beta  = 2 \:\sf \:  ⟼(1)

\bf\implies \: \alpha  \beta  = A\sf \:  ⟼(2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline \red{Step :- 3}

\sf \:  ⟼ \gamma  \: and  \: \delta \: are \: the \: roots \: of \:  {x}^{2}  - 18x + B = 0

\bf\implies \: \gamma  + \delta = 18\sf \:  ⟼(3)

\bf\implies \: \gamma \delta = B\sf \:  ⟼(4)

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline \red{Step :- 4}

On adding equation (1) and equation (3), we get

\sf \:  ⟼ \alpha  + \beta   +  \gamma  + \delta = 2 + 18

\sf \:  ⟼a - 3d + a -  d+  a+ d + a + 3d = 20

\sf \:  ⟼4a = 20

\bf\implies \:a = 5 \: \sf \:  ⟼(5)

From equation (1), we have

\sf \:  ⟼  \alpha +  \beta  = 2

\sf \:  ⟼a - 3d +a  -  d= 2

\sf \:  ⟼2a - 4d = 2

\sf \:  ⟼a - 2d = 1

On substituting the value of a = 5, from (1), we get

\sf \:  ⟼5 - 2d = 1

\sf \:  ⟼ - 2d =  - 4

\bf\implies \:d = 2\sf \:  ⟼(6)

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline \red{Step :- 5}

From equation (2), we have

\sf \:  ⟼ \alpha  \beta  = A

\sf \:  ⟼A = (a - 3d)(a - d)

On substituting the values of a and d we, get

\sf \:  ⟼A = (5 - 6)(5 - 2) =  - 3

\bf\implies \:A =  - 3\sf \:  ⟼(7)

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \: \underline \red{Step :- 6}

From equation (4), we have

\sf \:  ⟼ \gamma \delta = B

\sf \:  ⟼B = (a + d)(a + 3d)

On substituting the values of a and d we, get

\sf \:  ⟼B =(5  + 2) (5 + 6) = 77

\bf\implies \:B = 77

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, A =  - 3 \: and \: B = 77}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions