Math, asked by vermamonick, 9 months ago

help please.............​

Attachments:

Answers

Answered by shaikkaif1234567890
3

Step-by-step explanation:

here is the answer hope you guys understand and sorry for my bad handwriting

Attachments:
Answered by Anonymous
13

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

:\mapsto\sf{\red{\:\dfrac{x}{a\cos \theta}\:=\:\dfrac{y}{b\sin \theta}----(1)}} \\ \\ \\ :\mapsto\sf{\red{\:\dfrac{ax}{\cos \theta}\:-\:\dfrac{by}{\sin \theta}\:=\:a^2-b^2----(2)}}

\Large{\underline{\mathfrak{\bf{To\:prove}}}}

:\mapsto\sf{\pink{\:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\:=\:1}}

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

By,equation(2)

:\mapsto\sf{\:\dfrac{ax}{\cos \theta}\:-\:\dfrac{by}{\sin \theta}\:=\:a^2-b^2} \\ \\ \\ \small\sf{\green{\:we\:can\:write\:in\:this\:type}} \\ \\ \\ :\mapsto\sf{\:a^2(\dfrac{x}{a\cos \theta})-\dfrac{by}{\sin \theta}\:=\:a^2-b^2} \\ \\ \\ \small\sf{\green{\:\:\:\:keep\:value\:by\:equ(1)}} \\ \\ \\ :\mapsto\sf{\:a^2(\dfrac{y}{b\sin \theta})-\dfrac{by}{\sin \theta}\:=\:a^2-b^2} \\ \\ \\ :\mapsto\sf{\:\dfrac{y}{b\sin \theta}\left(a^2-b^2\right)\:=\:(a^2-b^2)} \\ \\ \\ :\mapsto\sf{\:\dfrac{y}{b\sin \theta}\:=\:\cancel{\dfrac{(a^2-b^2)}{(a^2-b^2)}}} \\ \\ \\ :\mapsto\sf{\orange{\:y\:=\:b\sin \theta}}

keep value of y in equ(1),

:\mapsto\sf{\:\cancel{\dfrac{a\cos \theta}{a \cos \theta}}\:=\:\dfrac{y}{b \sin \theta}} \\ \\ \\ :\mapsto\sf{\orange{\:y\:=\:b\sin \theta}}

We prove here,

:\mapsto\sf{\pink{\:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\:=\:1}}

Take, L.H.S.,

:\mapsto\sf{\:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}} \\ \\ \\ \small\sf{\green{\:\:\:keep\:value\:of\:x\:and\:y}} \\ \\ \\ :\mapsto\sf{\:\dfrac{a^2\cos^2 \theta}{a^2}+\dfrac{b^2\sin^2 \theta}{b^2}} \\ \\ \\ :\mapsto\sf{\:\sin^2 \theta+\cos^2 \theta} \\ \\ \\ \small\sf{\green{\:\:\:\star\sin^2 \theta+\cos^2 \theta\:=\:1}} \\ \\ \\ :\mapsto\sf{\red{\:1}}

= R.H.S.

That's proved.

Similar questions