Math, asked by sks74, 5 months ago

help.... plzzzzz.. ​

Attachments:

Answers

Answered by BrainlyEmpire
60

GivEn:-

Length of ladder = 10 m

Base of ladder from the wall = 6 m

⠀⠀⠀⠀⠀⠀⠀

To find:-

How far up the wall does the top of ladder reach?

⠀⠀⠀⠀⠀⠀⠀

Solution:-

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

Wall makes an angle of 90°.

⠀⠀⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{Using\: Pythagoras\:Theorem\::}}\\ \\

\setlength{\unitlength}{1.2cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf P}\put(4,2.5){\large\bf 10 m}\put(2.8,.3){\large\bf 6 m}\put(1.02,1.02){\framebox(0.3,0.3)}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\sf Here \begin{cases} & \sf{Hypotenuse,\;H = \bf{10\;cm}}  \\ & \sf{Base,\;B = \bf{6\;cm}}  \end{cases}\\ \\

\star\;{\boxed{\sf{\purple{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\\ \\

\dag\;{\underline{\frak{Putting\;values\;:}}}\\ \\

:\implies\sf (10)^2 = (6)^2 + (P)^2\\ \\ :\implies\sf 100 = 36 = P^2\\ \\ :\implies\sf P^2 = 100 - 36\\ \\ :\implies\sf P^2 = 64\\ \\ :\implies\sf P = \sqrt{64}\\ \\ :\implies{\boxed{\sf{\pink{P = 8\;cm}}}}\;\bigstar\\ \\

\therefore Hence, the top of ladder reach 8 m up on the wall.

Similar questions