Chemistry, asked by BrainlyHelper, 1 year ago

Henry’s law constant for CO2 in water is 1.67 × 10 8 Pa at 298 K. Calculate the quantity of CO2 in 500 mL of soda water when packed under 2.5 atm CO2 pressure at 298 K.

Answers

Answered by Anonymous
234

Answer :

Given,

 K_{H} = 1.67 \times 10^{8}  Pa

Pressure of  Co_{2}   , ρ co_{2}  = 2.5 atm = 2.5 × 101325 Pa

ρ co_{2}  =  K_{H}  × χ co_{2}

⇒ χ co_{2}  =  \frac{ρco_{2}}{K_{H}}    =  \frac{2.5 × 101325 Pa}{1.67 × 10^{8} Pa}

χ co_{2}  = 1.517 ×  10^{-3}

 ^{η}co_{2} =  \frac{^{η}co_{2}}{^{η}CO_{2} + ^{η}H_{2}O}

 \frac{^{η}co_{2}}{^{η}H_{2}O}      = 1.517 ×  10^{-3}

[ ∵  ^{η}CO_{2}   < < <  ^{η}H_{2}O  ]

∴ It can be neglected in the denominator.

 \frac{\dfrac{^{η}CO_{2}}{\ 500}}{18}  = 1.517 ×  10^{-3}

 ^{η}co_{2}   =  \frac{500}{18} \times 1.517 \times 10^{-3}

=  \frac{7.585}{18} \times 10^{-1} = \frac{75.85}{18} \times 10^{-2}

= 4.214 ×  10^{-2}  moles

= 42.14 ×  10^{-3}  moles

= 42.14 millimoles

Answered by RomeliaThurston
190

Answer: The amount of CO_2 in the given soda water is 1.848 g.

Explanation:

We are given:

K_H=1.67\times 10^8Pa

p_{CO_2}=2.5atm=(2.5\times 101325)Pa  (Conversion factor: 1 atm = 101325 Pa)

Using equation given by Henry's Law, we get:

p_{CO_2}=K_H\times \chi_{CO_2}

Putting values in above equation, we get:

2.5\times 101325=1.67\times 10^8\times \chi_{CO_2}\\\\\chi_{CO_2}=1.51\times 10^{-3}

Mole fraction of carbon dioxide in soda water is written as:

\chi_{CO_2}=\frac{n_{CO_2}}{n_{CO_2}+n_{H_2O}}

As, amount of water is more than the amount of carbon dioxide. Thus, moles of carbon dioxide will be neglected in the denominator.

Thus, \chi_{CO_2}=\frac{n_{CO_2}}{n_{H_2O}}     ......(1)

Density of water = 1 g/mL

So, the volume of water will be equal to the mass of water = 500 g

1g/mL=\frac{\text{mass of water}}{500mL}\\\\\text{Mass of water}=500g

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(2)

Given mass of water = 500 g

Molar mass of water = 18 g/mol

\text{Moles of water}=\frac{500g}{18g/mol}=27.78mol

Putting values in equation 1, we get:

1.51\times 10^{-3}=\frac{n_{CO_2}}{27.78mol}\\\\n_{CO_2}=0.042mol

Now, calculating the mass of carbon dioxide using equation 2, we get:

Molar mass of carbon dioxide = 44 g/mol

Moles of carbon dioxide = 0.042 mol

Putting values in equation 2, we get:

0.042mol=\frac{\text{Mass of carbon dioxide}}{44g/mol}\\\\\text{Mass of carbon dioxide}=1.848g

Hence, the amount of CO_2 in the given soda water is 1.848 g.

Similar questions