Math, asked by vaishnavimath2, 1 year ago

here goes a brilliant question
if the non parallel sides of a Trapezium are equal prove that it is cyclic ​

Answers

Answered by nehalgoswami
3

hope it helps you.....

I'm right or not...

Attachments:

vaishnavimath2: Thank you
nehalgoswami: okkkk
Answered by Anonymous
0

Hello mate =_=

____________________________

Solution:

It is given that ABCD is a trapezium with AB∥CD and AD=BC

We need to prove that ABCD is a cyclic quadrilateral.

Construction: Draw AM⊥CD and BN⊥CD

In ∆AMD and ∆BNC, we have

AD=BC            (Given)

∠AMD=∠BNC          (Each equal to 90°)

AM=BN        (Distance between two parallel lines is constant.)

Therefore, by RHS congruence rule, we have ∆AMD≅∆BNC

⇒∠D=∠C        (Corresponding parts of congruent triangles are equal)   ........ (1)

We also have ∠A+∠D=180′      (Co-interior angles, AB∥CD)     ......... (2)

From (1) and (2), we can say that ∠A+∠C=180°

⇒ ABCD is a cyclic quadrilateral.

(If the sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.)

I hope, this will help you.

Thank you______❤

_____________________________❤

Attachments:
Similar questions