here goes another sum...I have exams from Monday..pls help me. I am in class 10
Attachments:
Answers
Answered by
0
We have to prove, tanθ1−cotθ+cotθ1−tanθ=1+tanθ+cotθ
Let us take Left Hand Side (L.H.S.)
⇒tanθ1−cotθ+cotθ1−tanθ
⇒sinθcosθ1−cosθsinθ+cosθsinθ1−sinθcosθ
⇒sinθcosθsinθ−cosθsinθ+cosθsinθcosθ−sinθcosθ
⇒sinθcosθ.sinθsinθ−cosθ+cosθsinθ.cosθ−(sinθ−cosθ)
⇒sin2θcosθsinθ−cosθ−cos2θsinθsinθ−cosθ
⇒sin2θcosθ−cos2θsinθsinθ−cosθ
⇒sin3θ−cos3θsinθcosθsinθ−cosθ
⇒(sinθ−cosθ)(sin2θ+sinθ.cosθ+cos2θ)sinθcosθ.1sinθ−cosθ
⇒sin2θsinθcosθ+sinθ.cosθsinθ.cosθ+cos2θsinθ.cosθ
⇒sinθcosθ+1+cosθsinθ
⇒tanθ+1+cotθ = L. H. S
Let us take Left Hand Side (L.H.S.)
⇒tanθ1−cotθ+cotθ1−tanθ
⇒sinθcosθ1−cosθsinθ+cosθsinθ1−sinθcosθ
⇒sinθcosθsinθ−cosθsinθ+cosθsinθcosθ−sinθcosθ
⇒sinθcosθ.sinθsinθ−cosθ+cosθsinθ.cosθ−(sinθ−cosθ)
⇒sin2θcosθsinθ−cosθ−cos2θsinθsinθ−cosθ
⇒sin2θcosθ−cos2θsinθsinθ−cosθ
⇒sin3θ−cos3θsinθcosθsinθ−cosθ
⇒(sinθ−cosθ)(sin2θ+sinθ.cosθ+cos2θ)sinθcosθ.1sinθ−cosθ
⇒sin2θsinθcosθ+sinθ.cosθsinθ.cosθ+cos2θsinθ.cosθ
⇒sinθcosθ+1+cosθsinθ
⇒tanθ+1+cotθ = L. H. S
shreyansha2:
i think u copied the question wrong
Similar questions