Math, asked by MysterySoul, 7 months ago

Here is a question to test your maths!​

Attachments:

Answers

Answered by manaswi78
9

hope it helps.........!

Attachments:
Answered by Anonymous
10

AnsweR :-

Let's take RHS and LHS

RHS first :-

\sf \dfrac{1}{2}(x + y + z)( {x - y}^{2}) + ( {y - z)}^{2} + ( {z - x)}^{2}

Since  {(x - y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}

\sf \dfrac{1}{2}[(x + y + z)( {x}^{2} -  {y}^{2} - 2xy) + ( {y}^{2} +  {z}^{2}  -  2yz) + ( {z}^{2} +  {x}^{2} - 2zx)]

\sf \dfrac{1}{2}[(x + y +  z)( {2x}^{2}  +  {2y}^{2} +  {2z}^{2}  - 2xy - 2yz - 2zx)]

\sf \dfrac{1}{2}(x + y + z)2( {x}^{2} +  {y}^{2} +  {z}^{2} - xy - yz - zx)

\sf(x + y + z)( {x}^{2} +  {y}^{2} +  {z}^{2} - xy - yz - zy)

Now L.H.S :-

we know that

\sf {x}^{3} +  {y}^{3} +  {z}^{3}  - 3xyz

\sf (x + y + z)( {x}^{2} +  {y}^{2} +  {z}^{2} - xy - yz - zx)

\sf {x}^{2} +  {y}^{2} +  {z}^{2} - 3xyz

\therefore L.H.S = R.H.S

_____________________________________

Similar questions