Math, asked by sourishdgreat1, 1 year ago

here is question for you all solve this if you can.

Attachments:

Answers

Answered by SmãrtyMohït
22

Here is your solution

Let,

The first term of an A.P.=a

The common difference of the given A.P.=d

As we know that,

a n = a + (n − 1) d

a 4 = a + (4 − 1) d

a 4 = a + 3d

Similarly,

a 8 = a + 7d

a 6 = a + 5d

a 10 = a + 9d

Sum of 4th and 8th term =  24  (Given)

a 4 + a 8 = 24

a + 3d + a + 7d = 24

2a + 10d = 24

a + 5d = 12.................... (i)

Sum of 6th and 10th term = 44  (Given)

a 6 + a 10 = 44

a + 5d + a + 9d = 44

2a + 14d = 44

a + 7d = 22 ......................(ii)

from equation 1st and 2 on solving we get

d=5

From equation (i), we get,

a + 5d = 12

a + 5 (5) = 12

a + 25 = 12

a = −13

a 2 = a + d = − 13 + 5 = −8

a 3 = a 2 + d = − 8 + 5 = −3

∴The first three terms of this A.P. are −13, −8, and −3.




PavethaSri: osm.... ☺✌✌✌
PavethaSri: not mention
Answered by siddhartharao77
19

We know that nth term of an AP an = a + (n - 1) * d

Given that sum of 4th term and 8th term of an AP is 24.

(i) 4th term = a + (4 - 1) * d = a + 3d.

(ii) 8th term = a + (8 - 1) * d = a + 7d.

Now,

⇒ a + 3d + a + 7d = 24

⇒ 2a + 10d = 24

⇒ a + 5d = 12    -------- (1)


Given that 6th term and 10th term of an AP is 44.

(i) 6th term a6 = a + (6 - 1) * d = a + 5d.

(ii) 10th term a10 = a + (10 - 1) * d = a + 9d

Now,

⇒ a + 5d + a + 9d = 44

⇒ 2a + 14d = 44

⇒ a + 7d = 22     -------- (2)


On solving (1) & (2), we get

⇒ a + 5d = 12

⇒ a + 7d = 22

   -----------------

           2d = 10

                d = 5.


Substitute d = 5 in (1), we get

⇒ a + 5d = 12

⇒ a + 5(5) = 12

⇒ a + 25 = 12

⇒ a = -13.


Hence,

First term = -13.

Second term = -13 + 5 = -8.

Third term = -8 + 5 = -3.


Therefore, the AP is -13,-8,-3.


Hope this helps!

Similar questions