Physics, asked by BrainlyShadow01, 6 months ago

Here is your question
Irrelevant answers will be reported.

Attachments:

Answers

Answered by Anonymous
13

Solution:-

1) Using Lami's Theorem

 \rm \to \:  \dfrac{p}{ \sin \theta_{1}  }  =  \dfrac{Q}{ \sin \theta _{2} }  =  \dfrac{R}{ \sin\theta _{ 3}}

 \rm \to \:  \dfrac{p}{ \sin \theta_{1}  }    =  \dfrac{R}{ \sin\theta _{3}}

Now put the given value

 \rm \to \:  \dfrac{p}{ \sin \theta_{1}  }     \times { \sin\theta _{3}}=  {R}

 \rm \: R =  \sin150 \times  \dfrac{p}{ \sin \theta_{1}}

 \rm \to \: R =  \dfrac{1}{2}  \times  \dfrac{1.9318}{0.9659}

 \rm \to \: R =  \dfrac{1}{2}  \times 2 = 1

Ans = option :- b is correct

2)

:- FBD is attached see fig (ii)

By taking horizontal and vertical components we get

  \rm \to \: T  \times   \sin60 \degree = w \:  \:  \:  \: ...(i)eq

 \rm \to \: T \cos60 = 30 N\:  \:  \:  \:  \: .....(ii)eq

 \to \rm \: T  \times   \dfrac{ \sqrt{3} }{2}  = w \:  \:  \:  \: ...(i)eq

 \rm \to \:  \dfrac{1}{2}  \times T = 30N\:  \:  \:  \:  \: ..(ii)

From second equation we get T

 \rm \: T = 60N

Now put the value of T on first equation

 \rm \: 60 \times  \dfrac{ \sqrt{3} }{2}  = w

So

 \rm \to \: w = 30 \sqrt{3}

So option :- A is correct

3)FBD is attached see fig (iii)

By taking horizontal and vertical components we get

 \to \rm \: T \cos30 \degree = 0.05g \:  \:  \:  \:  \:  \: .....(i)eq

 \rm \to \: T \sin 30 \degree = F \:  \:  \:  \:  \: ....(ii)eq

Now

 \to \rm \: T \times  \dfrac{ \sqrt{3} }{2}  = 0.05 \times 10 \:  \:  \:  \: ....(i)eq

 \rm \to \: T \times  \dfrac{1}{2}  = F \:  \:  \:  \:  \:  \: ...(ii)eq

Now take (i)st equation

\to \rm \: T \times  \dfrac{ \sqrt{3} }{2}  = 0.5  \:  \:  \:  \: ....(i)eq

\to \rm \: T \times  { \sqrt{3} }{}  = 1 \:  \:  \:  \: ....(i)eq

\to \rm \: T {}  = \dfrac{1}{ \sqrt{3} }   \:  \:  \:  \: ....(i)eq

Now put the value of T on (ii) eq

 \rm \to \:  \dfrac{1}{ \sqrt{3} }  \times  \dfrac{1}{2}  = F \:  \:  \:  \:  \:  \: ...(ii)eq

 \rm \to \: F = 0.28 N\:  \:  \:  \:  \:  \: ...

Ans :- option D is correct

Attachments:
Similar questions