Here's a Math question from the Chapter Trigonometry.
The question is provided in the attachment.
Solve with proper explanation.
Expecting to see good answers !
Don't think of copying...
Answers
Answer:
Step-by-step explanation:
Refer to attachment for Diagram.
According to Diagram:
Sin²θ = ( AB / AC )²
Sin⁴θ = ( AB / AC )⁴
Cos²θ = ( BC / AC )²
Cos⁴θ = ( BC / AC )⁴
Similarly, for Ф we can write it as:
Sin²Ф = ( BC / AC )²
Sin⁴Ф = ( BC / AC )⁴
Cos²Ф = ( AB / AC )²
Cos⁴Ф = ( AB / AC )⁴
Now According to the question,
( Sin²θ / Cos⁴Ф ) + ( Sin⁴Ф / Cos²θ ) = 1
⇒ [ ( AB / AC )² / ( AB / AC )⁴ ] + [ ( BC / AC )⁴ / ( BC / AC )² ] = 1
⇒ [ AB² / AC² / AB⁴ / AC⁴ ] + [ BC⁴ / AC⁴ / BC² / AC² ] = 1
⇒ AC² / AB² + BC² / AC² = 1 ... ( Eqn. 1 )
Similarly,
Cos⁴θ / Sin²Ф + Cos²Ф / Sin⁴θ
Substituting the values we get,
⇒ [ ( BC / AC )⁴ / ( BC / AC )² ] + [ ( AB / AC )² / ( AB / AC )⁴
⇒ [ BC⁴ / AC⁴ / BC² / AC² ] + [ AB² / AC² / AB⁴ / AC⁴ ]
⇒ BC² / AC² + AC² / AB²
This is the same as we got in Equation 1.
Hence this is equal to 1.
Hence, Cos⁴θ / Sin²Ф + Cos²Ф / Sin⁴θ = 1
Hence Proved !!
Hope it helped !!