Math, asked by Anonymous, 1 month ago

Here's an easy question for you!


Consider two AP'S :-

A1 : 2, 7, 12, 17, . . . , upto 500 terms.

A2 : 1, 8, 15, 22, . . . , upto 300 terms.

Find the number of common terms and last common term between these two A.P.​

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Consider two AP'S :-

A1 : 2, 7, 12, 17, . . . , upto 500 terms.

A2 : 1, 8, 15, 22, . . . , upto 300 terms.

Now, Consider first series

\rm :\longmapsto\:2,7,12,17,22, -  -  - 500 \: terms

Its an AP series with

  • First term, a = 2

  • Common difference, d = 7.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a_{500} = a + (500 - 1)d

\rm :\longmapsto\:a_{500} = 2 + (500 - 1)5

\rm :\longmapsto\:a_{500} = 2 + (499)5

\rm :\longmapsto\:a_{500} = 2 + 2495

\rm :\longmapsto\:a_{500} = 2497

So, series is

\rm :\longmapsto\:\boxed{ \tt{ \: 2,7,12,17,22, -  -  - ,2497 \: }}

Now, Consider

\rm :\longmapsto\:1,8,15,22, -  -  - 300 \: terms

Its an AP series with

  • First term, a = 1

  • Common difference, d = 7

So,

\rm :\longmapsto\:a_{300} = 1 + (300 - 1)7

\rm :\longmapsto\:a_{300} = 1 + (299)7

\rm :\longmapsto\:a_{300} = 1 + 2093

\rm :\longmapsto\:a_{300} =  2094

So, series is

\rm :\longmapsto\:\boxed{ \tt{ \: 1,8,15,22, -  -  -,2094 \: }}

Now,

Common difference of first AP series = 5

Common difference of second AP series = 7

So, Common difference of Common terms = 5 × 7 = 35

and first term = 22

So, series become

\rm :\longmapsto\:22,57,92, -  -  -

So, to find number of terms, we assume that last term of the series is less than or equals to 2094.

So,

\rm :\longmapsto\:22 + (n - 1)35  \leqslant  2094

\rm :\longmapsto\:(n - 1)35 \leqslant 2094 - 22

\rm :\longmapsto\:(n - 1)35  \leqslant  2072

\rm :\longmapsto\:n - 1 \leqslant 59.2

\rm :\longmapsto\:n  \leqslant 59.2 + 1

\rm :\longmapsto\:n  \leqslant 60.2

\bf\implies \:n = 60

Thus,

\rm \implies\:a_{60} = a + (60 - 1)d

\rm \implies\:a_{60} = a + 59d

\rm \implies\:a_{60} = 22 + 59 \times 35

\rm \implies\:a_{60} = 22 +  2065

\rm \implies\:a_{60} =  2087

Hence,

\begin{gathered}\begin{gathered}\bf\: \rm \implies\:\begin{cases} &\sf{n \:  =  \: 60} \\  \\ &\sf{a_{60} = 2087} \end{cases}\end{gathered}\end{gathered}

Similar questions