Math, asked by shaiknowziya792, 11 months ago

here x+y=7,xy=12then x²+y²​

Answers

Answered by Brâiñlynêha
2

\huge\boxed{\boxed{\blue{\sf{Solution-}}}}

Given:-

x+y= 7, xy=12

To Find the value of \sf x{}^{2}+y{}^{2}

By the Formula of \boxed{\blue{\sf{(x+y){}^{2}=x{}^{2}+y{}^{2}+2xy}}}

According to question:-

\sf (x+y){}^{2}=x{}^{2}+y{}^{2}+2xy\\ \sf \implies (7){}^{2}=x{}^{2}+y{}^{2}+2×7\\ \sf\implies 49=x{}^{2}+y{}^{2}+14\\ \sf\implies 49-14=x{}^{2}+y{}^{2}\\ \sf\implies 35=x{}^{2}+y{}^{2}

\boxed{\sf{Verification}}

\sf (x+y)={}^{2}=x{}^{2}+y{}^{2}+2xy\\ \sf=> (7){}^{2}=35+2×7\\ \sf=> 49=35+14\\ \sf\implies49=49\\ \sf L.H.S=R .H.S

The value of :-

\sf\boxed{\pink{x{}^{2}+y{}^{2}=35}}

Answered by Anonymous
0

(x+y)^2=x^2+y+y^2+2xy

simply put the given value

7^2=x^2+y^2+2×12

x^2+y^2=35

be brainly ✌️

Similar questions