Math, asked by vaishnavitiwari1041, 1 year ago

Heres my question

Trigonometry

Class 10

No SPAM...​

Attachments:

Answers

Answered by Anonymous
20

SOLUTION

Refer to the attachment.

hope it helps ☺️⬆️

Attachments:
Answered by Anonymous
16

 \dfrac{tan \:  \theta}{1 \:  -  \: cot \:  \theta}  \:  +  \:  \dfrac{cot \:  \theta}{1 \:  -  \: tan \:  \theta}  \:  =  \: 1 \:  +  \: sec \:  \theta \: cosec \theta

__________ [ GIVEN ]

• We have to prove L.H.S. = R.H.S.

_____________________________

=>  \dfrac{tan \:  \theta}{1 \:  -  \: cot \:  \theta}  \:  +  \:  \dfrac{cot \:  \theta}{1 \:  -  \: tan \:  \theta}

=> \dfrac{ \frac{sin \theta}{cos \theta} }{1 \:  -  \:  \frac{cos \theta}{sin \theta} }  \:  +  \:  \dfrac{\frac{cos \theta}{sin \theta}}{1 \:  -   \: \frac{sin \theta}{cos \theta}  }

=> \dfrac{ \frac{sin \theta}{cos \theta} }{\frac{sin \:  \theta \:  -  \: cos \theta}{sin \theta} }  \:  +  \:  \dfrac{\frac{cos \theta}{sin \theta}}{ \frac{cos \:  \theta \:  -  \: sin \theta}{cos \theta}  }

=> \dfrac{sin \theta}{cos \theta}  \:  \times  \:  \dfrac{sin \theta}{sin \theta \:  -  \: cos  \theta}  \:  +  \: \dfrac{cos \theta}{sin \theta} \:  \times  \:  \dfrac{cos  \theta }{cos   \theta \:  -  \: sin \theta}

=> \dfrac{sin^{2}  \theta} {cos \theta(sin \theta \:  -  \: cos \theta)}  \:  -  \: \dfrac{cos^{2}  \theta}{sin \theta(-\:cos \theta \:  +  \: sin  \theta)}

=> \dfrac{1}{sin \theta \:  -  \: cos \theta} \bigg(  \dfrac{ {sin}^{3}  \theta \:  -  \:  {cos}^{3}  \theta}{sin \theta \: cos \theta} \bigg)

=> \dfrac{1}{sin \theta \:  -  \: cos \theta} \bigg(  \dfrac{ (sin\theta \:  -  \:  cos \theta) ( {sin}^{2} \theta \:  +  \:  {cos}^{2}  \theta \:  +  \: sin \theta \:  cos \theta) }{sin \theta \: cos \theta} \bigg)

=> \dfrac{1\:  +  \: sin \theta \:  +  \: cos \theta }{sin \theta \: cos \theta}

=> \dfrac{1 }{sin \theta \: cos \theta} + \dfrac{sin \theta \: cos \theta }{sin \theta \: cos \theta}

=> 1 \:  +  \: sec \:  \theta \: cosec \theta

L.H.S. = R.H.S.

_________ [ HENCE PROVED ]

_______________________________

✡ Formula used :

tanØ = sinØ/cosØ

cotØ = cosØ/sinØ

sinØ = 1/secØ

cosØ = 1/cosecØ

a³ - b³ = (a - b) (a² + b² + ab)

_______________________________

Similar questions