Math, asked by atha5, 1 year ago

Hey.☺

50 points yrr❤❤

(sin^4-cos^4+1)cosec^2=2

Answers

Answered by AJThe123456
8
Heyy mate ❤✌✌❤

Here's your Answer....

⤵️⤵️⤵️⤵️⤵️⤵️⤵️⤵️

L.H.S.

[sin^4 - cos^4 + 1] cosec^2

=> [ (sin^2)^2 - (cos^2)^2 + 1] cosec^2

=> [ (sin^2 + cos^2) (sin^2 - cos^2) +1] cosec^2

=> [ sin^2 - cos^2 + 1] cosec^2

=> [ sin^2 + ( 1 - cos^2) + 1 ] cosec^2

=> [ sin^2 + sin^2 ] cosec^2

=> 2 sin^2 × 1/ sin^2

=> 2.
✔✔✔
Answered by Anonymous
13
_____________________________

sᴏʟᴜᴛɪᴏɴ–

( {sin}^{4} -  {cos}^{4}   + 1)cosec {}^{2}  = 2
lhs \\ (( {sin}^{2} ) {}^{2}  -  { {(cos}^{2} )}^{2}  + 1) {cosec}^{2}
(( {sin}^{2}   +   {cos}^{2} )({sin}^{2}  -  {cos}^{2} ) + 1)
 {cosec}^{2}
(1 \times  {sin}^{2}  -  {cos}^{2}  + 1) {cosec}^{2}  \\ ( {sin}^{2}  + 1 -  {cos}^{2} ) {cosec}^{2}  \\ ( {sin}^{2}  +  {sin}^{2} ) \times  \frac{1}{ {sin}^{2} }  \\ 2 {sin}^{2}  \times   \frac{1}{ {sin}^{2} }  \\ 2 \times 1 \\  = 2
2= rhs

_____________________________

ᴛʜᴀɴᴋs☺️

Similar questions