Hey
A gun of mass 5 kg fires A bullet of mass 20 g an itself recoils with a velocity of 0.25 metre per second. Find the velocity of the bullet in kilometre per hour.
Answers
Mass of gun = 5kg
Mass of bullet = 20g or 0.02 kg
Initial velocity of bullet = 0
Initial velocity of gun = 0
Final velocity of gun = - 0.25 m/s
Now by using law of conservation of momentum :-
⇒ m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
⇒ 5(0) + 0.02(0) = 5(- 0.25) + 0.02(v)
⇒ 0 + 0 = - 1.25 + 0.02(v)
⇒ 0 = - 1.25 + 0.02(v)
⇒ 0.02(v) = 1.25
⇒ v = 1.25 ÷ 0.02
⇒ v = 62.5 m/s
So velocity of bullet = 62.5 m/s
Or 62.5 × 18/5
⇒ 12.5 × 18
= 225 km/h
Solution:
Given:
➜ A gun of mass 5 kg fires A bullet of mass 20 g an itself recoils with a velocity of 0.25 metre per second.
Find:
➜ Find the velocity of the bullet in kilometre per hour.
According to the given:
➜ 5kg is the mass of the gun.
➜ 20 g is the mass of the bullet.
➜ 0 is the Initial velocity of bullet
➜ 0 is the Initial velocity of gun
➜ -0.25 m/s is final velocity of the gun.
Law of conservation of momentum:
➜ m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
➜ 5 (0) + 0.02 (0) = 5 (-0.25) + 0.02 (v)
➜ 0 + 0 = - 1.25 + 0.02 (v)
➜ 0 = - 1.25 + 0.02 (v)
➜ 0.02 (v) = 1.25
➜ v = 1.25 ÷ 0.02
➜ v = 62.5 m/s
62.5 m/s = velocity of bullet.
➜ 62.5 × 18/5
➜ 12.5 × 18
➜ 225 km/h