Math, asked by manojrajoria19pb2h2m, 10 months ago

Hey any maths aryabhatta , plz solve this question ...... ✌​

Attachments:

Answers

Answered by Anonymous
46

Question -

Given

If 2x and 2y are complementary

And tan ( x + 2y ) = 2

To find :-

The value of cot ( x - y ) .

Solution :-

We are given that 2x and 2y are complementary angle .

Sum of complementary angles is equal to 90° .

2x + 2y = 90 °

From here we'll get the value of 2y .

2y = 90 - 2x.

Now x + y = \frac{90}{2}\\

↭ x + y = 45°

From here we'll find out the value of x .

x = 45 - y .

Now we are given that tan( x + 2y ) = 2 . So ,

Putting the value of 2y here ie 2y = 90-2x

tan ( x + 2y ) = 2

↭ tan ( x + 90 - 2x ) = 2

↭ tan ( 90 - x) = 2

As we know that tan(90-A) = Cot A .

Cot X = 2

We got the value of cot X ie 2

Now putting the value of x in the given equation .

tan ( x + 2y ) = 2

tan ( 45 - y + 2y ) = 2

tan ( 45 + y ) = 2

Now using tan ( 45 + A ) expansion .

We know that tan (45 + y) =  \frac{ \tan 45 + \tan y}{ 1 - \tan 45 . \tan y } \\

As we know that tan 45° = 1 .So

 \frac{1 + \tan y}{1 - \tan y } \\ =  \frac{2}{1} \\

Now applying componendo and dividendo

1 + tan y + 1 - tan y / 1 + tan y - 1 + tan y = 2 +1/2-1

2 / 2 tan y = 3 / 1

1 / tan y = 3

So cot y = 3 .

We got the value of cot y also .

Now expanding cot ( x - y ) by sum and difference of angles .

 \frac{\cot (x) \times \cot (y) + 1 }{ \cot (y) - \cot (x)} \\

Now putting the value of cot X and cot y over here.

↭ ( 2 × 3 ) + 1 / 3-2

6 + 1 / 1

7

Cot ( x - y ) = 7 .


Rythm14: Perfffect!
kaushik05: Nice
Anonymous: Keep going ! :)
Answered by Anonymous
155

Question :

If 2x and 2y are complementary angles and tan(x+2y)=2, then find the value of cot(x-2y)

Formula's used :

•Trignometric Formula's:

 \sf \tan(x + y) =  \frac{ \tan x +  \tan y}{1 -  \tan x \tan y}

 \sf \cot(x  -  y) =  \frac{ \cot x \cot y + 1}{ \cot y -  \cot x}

•Componendo and dividendo:

For any equal ratio

 \dfrac{a}{b}  =  \dfrac{c}{d}

we can apply Componendo and dividendo, which gives

 \dfrac{a + b}{a - b}  =  \dfrac{c + d}{c - d}

Solution :

Given : 2x and 2y are complementary angles .

⇒ 2x+2y = 90°

⇒x+y=45°

⇒y=45°-x

 \sf \tan(x  + 2y) = 2

Put y = 45-x

  \implies \sf  \tan(x + 2(45 - x)) = 2

 \implies \sf \tan(90 - x) = 2

we know that tan (90-x)= cotx

 \implies \sf  \cot x = 2 ...(1)

And  \tan(x + 2y) = 2

put x = 45-y

 \implies \sf \tan(45 - y + 2y) = 2

 \implies \sf  \tan(45 + y) = 2

 \implies  \sf \frac{ \tan45 +  \tan y}{1 -  \tan45  \tan y}  = 2

 \implies \sf  \frac{1 +  \tan y}{1 -  \tan y}  = 2

Now use Componendo and dividendo

 \implies \sf \frac{(1 +  \tan y) + (1 -  \tan y)}{(1 + \tan y) - (1 -  \tan y)}  =  \frac{2 + 1}{2 - 1}

 \implies \sf  \frac{ 1 +  \tan y + 1 -  \tan y}{1  +  \tan y - 1 +  \tan y} =  \frac{3}{1}

 \implies \sf \dfrac{ \cancel{2}}{ \cancel{2} \times  \tan y}  = 3

 \implies \sf \cot y = 3  ...(2)

Now cot (x-y)

 =  \sf \dfrac{ \cot x \cot y - 1}{ \cot y -  \cot x}

put the values of cot x and cot y from (1)and (2)

 =  \sf \dfrac{2 \times 3  +  1}{3 - 2}

 = 7

Therefore,the value of cot(x-y)=7

_________________________

More Trigonometric Formula's:

sin2A = 2 sinA cosA

cos2A = cos²A - sin²A

tan2A = 2 tanA / (1 - tan²A)


Rythm14: well done! :D
Anonymous: Awesome
kaushik05: Great :)
Similar questions