Math, asked by Anonymous, 2 days ago

hey, can anyone help me with this question please if you answer this then I will mark that guy branliest. This question is of the chapter The number system.

Attachments:

Answers

Answered by Anonymous
1

Answer:

91 \tiny \: 300 \\ i \: hope \: it \: work : )

Answered by Dalfon
38

Answer:

a = 6 and b = -1/2

Step-by-step explanation:

\implies\:\dfrac{ ({81}^{1/3} ) \times ( {27}^{1/2} )}{2 \times ( {3}^{5/6} )}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ ({3}^{4 \times 1/3} ) \times ( {3}^{3 \times 1/2} )}{2 \times ( {3}^{5/6} )}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ ({3}^{4/3} ) \times ( {3}^{3/2} )}{2 \times ( {3}^{5/6} )}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ ({3}^{4/3 +  3/2})}{2 \times ( {3}^{5/6} )}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ {3}^{(8 + 9)/6}}{2 \times ( {3}^{5/6} )}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ {3}^{17/6}}{2 \times ( {3}^{5/6} )}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ 22.48}{2 \times 2.5}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ 22.48}{5}  +  \dfrac{1}{3 +  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ 22.48}{5}  +  \dfrac{1}{3 +  \sqrt{7} } \times  \dfrac{3 -  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}

\implies\:\dfrac{ 22.48}{5}  +  \dfrac{3 -  \sqrt{7} }{9 - 7 } = a + b \sqrt{7}

\implies\:4.5  +  \dfrac{3 -  \sqrt{7} }{2} = a + b \sqrt{7}

\implies\:\dfrac{9 + 3 -  \sqrt{7} }{2} = a + b \sqrt{7}

\implies\:\dfrac{12 -  \sqrt{7} }{2} = a + b \sqrt{7}

\implies\:\dfrac{12}{2}  - \dfrac{\sqrt{7} }{2} = a + b \sqrt{7}

\implies\:6 - \dfrac{\sqrt{7} }{2} = a + b \sqrt{7}

Om comparing we get,

a = 6 and b√7 or b = -1/2

Similar questions