Hey Friends!!!
Here is question for you . iit level + Questions
___________________________
If in a triangle ABC cosAcosB + sinA sinB sinC = 1 then proove that a : b : c =1 : 1 : √2
_________________________
Answers
Answered by
3
hiiii dear___________❤️❤️❤️
good evening_________________✌️✌️✌️
______________________________________________________
______________
We are given that in ∆ ABC ;
cos A cos B + sin A sin B sin C = 1
⇒ sin A sin B sin C = 1 – cos A cos B
⇒ sin C = 1 – cos A cos B/sin A sin B
⇒ 1 – cos A cos B/sin A sin B ≤ 1 [∵ sin C ≤ 1]
⇒ 1 – cos A cos B ≤ sin A sin B
⇒ 1 ≤ cos A cos B + sin A sin B
⇒ 1 ≤ cos(A – B)
⇒ 1 ≤ cos(A – B)
But we know cos (A – B) ≤1
∴ We must have cos (A – B) = 1
⇒ A – B = 0
⇒ A = B
∴ cos A cos A + sin A sin A sin C = 1 [For A = B]
⇒ cos2 A + sin2 A sin C = 1
⇒ sin2 A sin C = 1 – cos2 A
⇒ sin2 A sin C = sin2 A
⇒ sin2 A (sin C – 1) = 0
⇒ sin A = 0 or sin C = 1
The only possibility is sin C = 1 ⇒ C = π/2
∴ A + B = π/2
But A = B ⇒ A = B = π/4
∴ By Sine law in ∆ ABC,
a/sin A = b/sin B = c/sin C
⇒ a/sin 45° = b/sin 45° = c/sin 90°
⇒ a/1/√2 = b/1/√2 = c/1
⇒ a/1 = b/1 = 1/√2 ⇒ a : b : c = 1 : 1 : √2
Hence proved the result
good evening_________________✌️✌️✌️
______________________________________________________
______________
We are given that in ∆ ABC ;
cos A cos B + sin A sin B sin C = 1
⇒ sin A sin B sin C = 1 – cos A cos B
⇒ sin C = 1 – cos A cos B/sin A sin B
⇒ 1 – cos A cos B/sin A sin B ≤ 1 [∵ sin C ≤ 1]
⇒ 1 – cos A cos B ≤ sin A sin B
⇒ 1 ≤ cos A cos B + sin A sin B
⇒ 1 ≤ cos(A – B)
⇒ 1 ≤ cos(A – B)
But we know cos (A – B) ≤1
∴ We must have cos (A – B) = 1
⇒ A – B = 0
⇒ A = B
∴ cos A cos A + sin A sin A sin C = 1 [For A = B]
⇒ cos2 A + sin2 A sin C = 1
⇒ sin2 A sin C = 1 – cos2 A
⇒ sin2 A sin C = sin2 A
⇒ sin2 A (sin C – 1) = 0
⇒ sin A = 0 or sin C = 1
The only possibility is sin C = 1 ⇒ C = π/2
∴ A + B = π/2
But A = B ⇒ A = B = π/4
∴ By Sine law in ∆ ABC,
a/sin A = b/sin B = c/sin C
⇒ a/sin 45° = b/sin 45° = c/sin 90°
⇒ a/1/√2 = b/1/√2 = c/1
⇒ a/1 = b/1 = 1/√2 ⇒ a : b : c = 1 : 1 : √2
Hence proved the result
AJAYMAHICH:
chill h yr....
Answered by
1
hey mate here is ur ans MARK MY ANSWER AS BRAINLIST OKK BRO AND FOLLOW ME IN BRAINLY BYY.
Attachments:
Similar questions