Math, asked by ambeycharusingh, 2 months ago

hey friends please help me out with this x-2/x+2+x+2/x-2=4​

Answers

Answered by Aishxx
0

Answer:

Check the file I've attached the answer

Step-by-step explanation:

Attachments:
Answered by MrImpeccable
4

ANSWER:

Given:

  • (x - 2)/(x + 2) + (x + 2)/(x - 2) = 4

To Find:

  • Value of x

Solution:

We are given that,

:\implies\dfrac{x-2}{x+2}+\dfrac{x+2}{x-2}=4

Now we'll take LCM,

:\implies\dfrac{(x-2)(x-2)+(x+2)(x+2)}{(x+2)(x-2)}=4

So,

:\implies\dfrac{(x-2)^2+(x+2)^2}{(x+2)(x-2)}=4

We know that,

:\hookrightarrow(a\pm b)^2=a^2\pm2ab+b^2

And,

:\hookrightarrow(a+b)(a-b)=a^2-b^2

So,

:\implies\dfrac{(x-2)^2+(x+2)^2}{(x+2)(x-2)}=4

:\implies\dfrac{(x^2-4x+4)+(x^2+4x+4)}{(x^2-4)}=4

Opening brackets,

:\implies\dfrac{x^2-4x+4+x^2+4x+4}{x^2-4}=4

:\implies\dfrac{2x^2+8}{x^2-4}=4

Transposing x² - 4 to RHS,

:\implies2\!\!\!/\:(x^2+4)=4\!\!\!/^2\:(x^2-4)

So,

:\implies x^2+4=2(x^2-4)

Opening the brackets,

:\implies x^2+4=2x^2-8

Transposing LHS to RHS,

:\implies 0=2x^2-8-(x^2+4)

So,

:\implies 0=2x^2-8-x^2-4

:\implies x^2-12=0

Transposing 12 to RHS,

:\implies x^2=12

:\implies x=\pm\sqrt{12}

Therefore,

:\implies\bf x=\pm2\sqrt2

Hence, the value of x is ±2√2.

Similar questions