Math, asked by LAKSHMINEW, 1 year ago

Hey genius ji here is ur question?

IF 2 ZEROES OF THE POLYNOMIAL
xto \: the \: power4 - 6xcube - 26x sq. + 138x - 35
are
2 + or -  \sqrt3
find other zeroes.

PLS HELP ME GENIUS JI ​

Answers

Answered by ShubhGandhi2903
2

x⁴ - 6x³ - 26x² + 138x - 35 = 0

Now

ã(alpha)+ ß(beta) + ¥ (gamma) + d(delta) = - b / a

à + ß + ¥ + d = -(-6) / 1

à + ß + 2 - √3 = 6

à + ß = 6 - 2 + √3

à + ß = 4 + √3 ...(1)

Now

àߥd {product of zeroes) = e / a

àß2×(-√3) = - 35 / 1

àß × (-2√3) = - 35

àß = - 35 / -2√3

àß = 35 / 2√3

à = 35 / 2√3 × ß...(2)

put the value of à in equation (1)

35/2√3 + ß = 4 + √3

ß = 4 + √3 - 35 / 2√3

ß = 8√3 - 6 - 35 / 2√3

ß = 8√3 - 29 / 2√3

ß = 4 - 29/2√3

put the value of ß in equation (2)

à = 35/2√3 × 4 - 29 /2√3

à = (35 × 4) - (35 × 29) / 12

à = 140 - 1015 / 12

à = 875 / 12

Hence the zeroes are

4 - 29 / 23 and 875 / 12

Hope you like it please mark as brainliest and please follow me.


LAKSHMINEW: Yes
LAKSHMINEW: Rahul u ANSWER
rahul200013: how @Lakshmi @siva is answering
rahul200013: and i am sure he will answer correct
LAKSHMINEW: Okkk
rahul200013: yep
LAKSHMINEW: Rahul answer my one more question
LAKSHMINEW: I posted see
rahul200013: yep I'm on it
sivaprasath: I solved it & got correct answers,. check it out,.
Answered by sivaprasath
6

Answer:

Step-by-step explanation:

Given :

Two zeroes of the polynomial x^4 - 6x^3 - 26x^2 + 138x - 35 = 0 are 2 ±√3.

To Find :

The other zeroes of the polynomial,.

Solution :

The sum of the zeroes of the polynomial of the form,

ax^4 + bx^3 + cx^2 + dx + e = 0 is \frac{-b}{a}

here,  a = 1 , b = -6 , c = -26 , d = 138 , e = -35

Let the other 2 zeroes be x and y,

Sum of the zeroes,

(2 + √3) + (2 - √3) + x + y = \frac{-(-6)}{1}

4 + x + y = 6

x + y = 2,   ...(i)

_

The product of the zeroes is \frac{e}{a}

(2 + √3)(2 - √3)(x)(y) = \frac{-35}{1}

(2² - (√3)²)xy = -35

( 4 - 3) xy = -35 ⇒ xy = -35 ..(ii)

_

( x + y ) ² = x² + y² + 2xy

⇒ (2)² = x² + y² + 2( -35 )

⇒ 4 = x² + y² - 70

⇒ x² + y² = 74  ...(iii)

_

(x - y)² = x² + y² - 2xy

⇒ ( x - y )² = 74 - 2( -35 )

⇒ ( x - y )² = 74 + 70 = 144

⇒ ( x - y ) = √144 = 12

⇒ x - y = 12 ...(iv)

Adding, (i) & (iv)

We get,

(x + y) + (x - y) = 2 + 12 = 14

⇒ 2x = 14 ⇒ x = 7,.

_

Substituting the value of x in (i),

We get,

7 + y = 2

⇒ y = -5

∴ The two zeroes are 7,-5


LAKSHMINEW: THANKS A LOT GENIUS JI!!❤❤❤
sivaprasath: Sorry for delay,.
LAKSHMINEW: No problem dear
Similar questions