Hey genius ji here is ur question?
IF 2 ZEROES OF THE POLYNOMIAL
are
find other zeroes.
PLS HELP ME GENIUS JI
Answers
x⁴ - 6x³ - 26x² + 138x - 35 = 0
Now
ã(alpha)+ ß(beta) + ¥ (gamma) + d(delta) = - b / a
à + ß + ¥ + d = -(-6) / 1
à + ß + 2 - √3 = 6
à + ß = 6 - 2 + √3
à + ß = 4 + √3 ...(1)
Now
àߥd {product of zeroes) = e / a
àß2×(-√3) = - 35 / 1
àß × (-2√3) = - 35
àß = - 35 / -2√3
àß = 35 / 2√3
à = 35 / 2√3 × ß...(2)
put the value of à in equation (1)
35/2√3 + ß = 4 + √3
ß = 4 + √3 - 35 / 2√3
ß = 8√3 - 6 - 35 / 2√3
ß = 8√3 - 29 / 2√3
ß = 4 - 29/2√3
put the value of ß in equation (2)
à = 35/2√3 × 4 - 29 /2√3
à = (35 × 4) - (35 × 29) / 12
à = 140 - 1015 / 12
à = 875 / 12
Hence the zeroes are
4 - 29 / 2√3 and 875 / 12
Hope you like it please mark as brainliest and please follow me.
Answer:
Step-by-step explanation:
Given :
Two zeroes of the polynomial are 2 ±√3.
To Find :
The other zeroes of the polynomial,.
Solution :
The sum of the zeroes of the polynomial of the form,
is
here, a = 1 , b = -6 , c = -26 , d = 138 , e = -35
Let the other 2 zeroes be x and y,
Sum of the zeroes,
(2 + √3) + (2 - √3) + x + y =
4 + x + y = 6
x + y = 2, ...(i)
_
The product of the zeroes is
(2 + √3)(2 - √3)(x)(y) =
(2² - (√3)²)xy = -35
( 4 - 3) xy = -35 ⇒ xy = -35 ..(ii)
_
( x + y ) ² = x² + y² + 2xy
⇒ (2)² = x² + y² + 2( -35 )
⇒ 4 = x² + y² - 70
⇒ x² + y² = 74 ...(iii)
_
(x - y)² = x² + y² - 2xy
⇒ ( x - y )² = 74 - 2( -35 )
⇒ ( x - y )² = 74 + 70 = 144
⇒ ( x - y ) = √144 = 12
⇒ x - y = 12 ...(iv)
Adding, (i) & (iv)
We get,
(x + y) + (x - y) = 2 + 12 = 14
⇒ 2x = 14 ⇒ x = 7,.
_
Substituting the value of x in (i),
We get,
7 + y = 2
⇒ y = -5
∴ The two zeroes are 7,-5