Math, asked by khushimohanty12456, 4 days ago

Hey guys help me to answer this question​

Attachments:

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

We have to evaluate 103 x 107 using identity.

We can write the product as:

\rm = (100 + 3)(100 + 7)

Let us assume that:

 \rm: \longmapsto x = 100

 \rm: \longmapsto a = 3

 \rm: \longmapsto b= 7

Therefore, the product becomes:

\rm = (x + a)(x + b)

Using identity, we get:

\rm = {x}^{2}  + (a + b)x + ab

Substituting the values in the expression, we get:

\rm = {100}^{2}  + (3 + 7) \times 100 + 3 \times 7

\rm = 10000 + 1000 +21

\rm = 11021

Therefore:

 \rm: \longmapsto 103 \times 107 = 11021

Which is our required answer.

\textsf{\large{\underline{More Identities To Know}:}}

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Answered by SANDHIVA1974
1

Answer:

\large\bf{\underline{\green{VERIFIED✔}}}

Step-by-step explanation:

[tex]\textsf{\large{\underline{Solution}:}}

We have to evaluate 103 x 107 using identity.

We can write the product as:

\rm = (100 + 3)(100 + 7)

Let us assume that:

 \rm: \longmapsto x = 100

 \rm: \longmapsto a = 3

 \rm: \longmapsto b= 7

Therefore, the product becomes:

\rm = (x + a)(x + b)

Using identity, we get:

\rm = {x}^{2}  + (a + b)x + ab

Substituting the values in the expression, we get:

\rm = {100}^{2}  + (3 + 7) \times 100 + 3 \times 7

\rm = 10000 + 1000 +21

\rm = 11021

Therefore:

 \rm: \longmapsto 103 \times 107 = 11021

★ Which is our required answer.

\textsf{\large{\underline{More Identities To Know}:}}

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)³ = a³ + 3ab(a + b) + b³

(a - b)³ = a³ - 3ab(a - b) - b³

a³ + b³ = (a + b)(a² - ab + b²)

a³ - b³ = (a - b)(a² + ab + b²)

(x + a)(x + b) = x² + (a + b)x + ab

(x + a)(x - b) = x² + (a - b)x - ab

(x - a)(x + b) = x² - (a - b)x - ab

(x - a)(x - b) = x² - (a + b)x + ab[/tex]

Similar questions