hey guys.............
Here is my question................
Prove that
Cos12° + cos60° +cos84° = cos24° + cos48°
And and and
One more question
Value of cos34°
PLZZ answer it quickly
Aryan562002:
i don't know yarr
Answers
Answered by
1
1) prove that
cos 12° + cos 60° + cos 84° = cos 24° + cos 48°
solution:
LHS = cos12° + (cos84° + cos60°)
LHS= cos12° + (cos(72°+12°) + cos (72°-12°))
LHS= cos12° + 2cos72° cos12°
[note: cos(A+B) + cos(A-B) = 2 cosA cosB]
LHS= cos12°(1+2cos72°)
LHS= cos12°(1+2sin18°)
[note: cos(90-A) = sinA]
LHS= cos12°(1+2((√5-1)/4))
[note: sin18° = (√5-1)/4]
LHS= cos12°((2+√5-1)/2)
LHS= cos12° ((1+√5)/2)
RHS= cos24° + cos48°
RHS= cos(36°-12°) + cos(36°+12°)
[note: cos(A+B) + cos(A-B) = 2 cosA cosB]
RHS= 2cos36° cos12°
[note: cos36° = (√5+1)/4]
RHS= 2((√5+1)/4) cos12°
RHS= cos12°((1+√5)/2)
therefore LHS = RHS
hence proved
value of cos36° = (√5+1)/4
cos 12° + cos 60° + cos 84° = cos 24° + cos 48°
solution:
LHS = cos12° + (cos84° + cos60°)
LHS= cos12° + (cos(72°+12°) + cos (72°-12°))
LHS= cos12° + 2cos72° cos12°
[note: cos(A+B) + cos(A-B) = 2 cosA cosB]
LHS= cos12°(1+2cos72°)
LHS= cos12°(1+2sin18°)
[note: cos(90-A) = sinA]
LHS= cos12°(1+2((√5-1)/4))
[note: sin18° = (√5-1)/4]
LHS= cos12°((2+√5-1)/2)
LHS= cos12° ((1+√5)/2)
RHS= cos24° + cos48°
RHS= cos(36°-12°) + cos(36°+12°)
[note: cos(A+B) + cos(A-B) = 2 cosA cosB]
RHS= 2cos36° cos12°
[note: cos36° = (√5+1)/4]
RHS= 2((√5+1)/4) cos12°
RHS= cos12°((1+√5)/2)
therefore LHS = RHS
hence proved
value of cos36° = (√5+1)/4
Similar questions
Social Sciences,
7 months ago
Hindi,
7 months ago
English,
7 months ago
Math,
1 year ago
Physics,
1 year ago
Psychology,
1 year ago