Math, asked by drmalik021, 9 months ago

Hey guys ..
Please help me with this question.
I have given the answers but I want the working.
No spamming .. ​

Attachments:

Answers

Answered by pulakmath007
33

\displaystyle\huge\red{\underline{\underline{Solution}}}

EVALUATION

10 \:  {sin}^{2}  \theta - 5\:  {cos}^{2}  \theta + 2 = 4\:  {sin} \theta

 \implies \: 10 \:  {sin}^{2}  \theta - 5(1 - \:  {sin}^{2}  \theta )+ 2 = 4\:  {sin} \theta

 \implies \: 10 \:  {sin}^{2}  \theta - 5+ 5 \:  {sin}^{2}  \theta + 2 = 4\:  {sin} \theta

 \implies \: 15 \:  {sin}^{2}  \theta - 4\:  {sin} \theta - 3 = 0

 \implies \: 15 \:  {sin}^{2}  \theta - 9\:  {sin} \theta +  5\:  {sin} \theta - 3 = 0

 \implies \: 3 \:  {sin} \theta\:( 5 {sin} \theta - 3)  + 1(  5\:  {sin} \theta - 3) = 0

 \implies \:( 3 \:  {sin} \theta\: + 1)( 5 {sin} \theta - 3)  = 0

so \: either \: \:( 3 \:  {sin} \theta\: + 1) = 0 \:  \: or \:  \: ( 5 {sin} \theta - 3)  = 0

 \displaystyle \: so \: either \: \:  \:  {sin} \theta\:  =  -  \frac{ 1 }{3} \:  \: or \:  \:  {sin} \theta  =  \frac{3}{5}

If

 \displaystyle \:  \: \:  \:  {sin} \theta\:  =  -  \frac{ 1 }{3}  \:

Then x is in third or Fourth Quadrant

So in this case

x \:  = {199.5}^{ \circ}  \:  \:  \: or \:  \: {340.5}^{ \circ}

If

 \displaystyle \:  \: \:  \:  {sin} \theta\:  =    \frac{ 3 }{5}  \:

Then x is First or second quadrant

So in this case

x \:  = {36.9}^{ \circ}  \:  \:  \: or \:  \: {143.1}^{ \circ}

RESULT

SO THE REQUIRED SOLUTION IS

x \:  = {36.9}^{ \circ}   \: ,  \: {143.1}^{ \circ}  \: ,{199.5}^{ \circ}  \:,  {340.5}^{ \circ}

Answered by MysteriousAryan
0

Answer:

10sin

2

θ−5cos

2

θ+2=4sinθ

\implies \: 10 \: {sin}^{2} \theta - 5(1 - \: {sin}^{2} \theta )+ 2 = 4\: {sin} \theta⟹10sin

2

θ−5(1−sin

2

θ)+2=4sinθ

\implies \: 10 \: {sin}^{2} \theta - 5+ 5 \: {sin}^{2} \theta + 2 = 4\: {sin} \theta⟹10sin

2

θ−5+5sin

2

θ+2=4sinθ

\implies \: 15 \: {sin}^{2} \theta - 4\: {sin} \theta - 3 = 0⟹15sin

2

θ−4sinθ−3=0

\implies \: 15 \: {sin}^{2} \theta - 9\: {sin} \theta + 5\: {sin} \theta - 3 = 0⟹15sin

2

θ−9sinθ+5sinθ−3=0

\implies \: 3 \: {sin} \theta\:( 5 {sin} \theta - 3) + 1( 5\: {sin} \theta - 3) = 0⟹3sinθ(5sinθ−3)+1(5sinθ−3)=0

\implies \:( 3 \: {sin} \theta\: + 1)( 5 {sin} \theta - 3) = 0⟹(3sinθ+1)(5sinθ−3)=0

so \: either \: \:( 3 \: {sin} \theta\: + 1) = 0 \: \: or \: \: ( 5 {sin} \theta - 3) = 0soeither(3sinθ+1)=0or(5sinθ−3)=0

\displaystyle \: so \: either \: \: \: {sin} \theta\: = - \frac{ 1 }{3} \: \: or \: \: {sin} \theta = \frac{3}{5}soeithersinθ=−

3

1

orsinθ=

5

3

If

\displaystyle \: \: \: \: {sin} \theta\: = - \frac{ 1 }{3} \:sinθ=−

3

1

Then x is in third or Fourth Quadrant

So in this case

x \: = {199.5}^{ \circ} \: \: \: or \: \: {340.5}^{ \circ}x=199.5

or340.5

If

\displaystyle \: \: \: \: {sin} \theta\: = \frac{ 3 }{5} \:sinθ=

5

3

Then x is First or second quadrant

So in this case

x \: = {36.9}^{ \circ} \: \: \: or \: \: {143.1}^{ \circ}x=36.9

or143.1

RESULT

SO THE REQUIRED SOLUTION IS

x \: = {36.9}^{ \circ} \: , \: {143.1}^{ \circ} \: ,{199.5}^{ \circ} \:, {340.5}^{ \circ}x=36.9

,143.1

,199.5

,340.5

Similar questions