Hey guys ..
Please help me with this question.
I have given the answers but I want the working.
No spamming ..
Answers
EVALUATION
If
Then x is in third or Fourth Quadrant
So in this case
If
Then x is First or second quadrant
So in this case
RESULT
SO THE REQUIRED SOLUTION IS
Answer:
10sin
2
θ−5cos
2
θ+2=4sinθ
\implies \: 10 \: {sin}^{2} \theta - 5(1 - \: {sin}^{2} \theta )+ 2 = 4\: {sin} \theta⟹10sin
2
θ−5(1−sin
2
θ)+2=4sinθ
\implies \: 10 \: {sin}^{2} \theta - 5+ 5 \: {sin}^{2} \theta + 2 = 4\: {sin} \theta⟹10sin
2
θ−5+5sin
2
θ+2=4sinθ
\implies \: 15 \: {sin}^{2} \theta - 4\: {sin} \theta - 3 = 0⟹15sin
2
θ−4sinθ−3=0
\implies \: 15 \: {sin}^{2} \theta - 9\: {sin} \theta + 5\: {sin} \theta - 3 = 0⟹15sin
2
θ−9sinθ+5sinθ−3=0
\implies \: 3 \: {sin} \theta\:( 5 {sin} \theta - 3) + 1( 5\: {sin} \theta - 3) = 0⟹3sinθ(5sinθ−3)+1(5sinθ−3)=0
\implies \:( 3 \: {sin} \theta\: + 1)( 5 {sin} \theta - 3) = 0⟹(3sinθ+1)(5sinθ−3)=0
so \: either \: \:( 3 \: {sin} \theta\: + 1) = 0 \: \: or \: \: ( 5 {sin} \theta - 3) = 0soeither(3sinθ+1)=0or(5sinθ−3)=0
\displaystyle \: so \: either \: \: \: {sin} \theta\: = - \frac{ 1 }{3} \: \: or \: \: {sin} \theta = \frac{3}{5}soeithersinθ=−
3
1
orsinθ=
5
3
If
\displaystyle \: \: \: \: {sin} \theta\: = - \frac{ 1 }{3} \:sinθ=−
3
1
Then x is in third or Fourth Quadrant
So in this case
x \: = {199.5}^{ \circ} \: \: \: or \: \: {340.5}^{ \circ}x=199.5
∘
or340.5
∘
If
\displaystyle \: \: \: \: {sin} \theta\: = \frac{ 3 }{5} \:sinθ=
5
3
Then x is First or second quadrant
So in this case
x \: = {36.9}^{ \circ} \: \: \: or \: \: {143.1}^{ \circ}x=36.9
∘
or143.1
∘
RESULT
SO THE REQUIRED SOLUTION IS
x \: = {36.9}^{ \circ} \: , \: {143.1}^{ \circ} \: ,{199.5}^{ \circ} \:, {340.5}^{ \circ}x=36.9
∘
,143.1
∘
,199.5
∘
,340.5
∘