CBSE BOARD X, asked by Anonymous, 5 months ago

hey guys plz solve this question.....​

Attachments:

Answers

Answered by marutidesaiga2328508
2

Explanation:

To solve :

\sf{2x^{2}-8x+4~~using~quadratic~formula}

Solution :

Quadratic formula :-

 \underline{ \boxed{ \sf{ \pmb{ \frac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a} }}}}

 

a = 2

b = –8

c = 4

\sf{Discriminant,~D=b^{2}-4ac}

\sf\implies{(-8)^{2}-4(2)(4)}

\sf\implies{64-4(8)}

\sf\implies{64-32}

\sf{~~~~~ \therefore~{\purple{\underline{\boxed{\sf{\pmb{Discriminant,~b^{2}-4ac=32}}}}}}}

\sf\implies{ {\dfrac{-(-8) \pm {\sqrt{32}}}{2(2)}}}

\sf\implies{ {\dfrac{8 \pm {\sqrt{16 \times 2}}}{4}}}

\sf\implies{ {\dfrac{8 \pm 4{\sqrt{2}}}{4}}}

\sf\implies{ {\dfrac{8 + 4{\sqrt{2}}}{4}}~,~~{\dfrac{8 - 4{\sqrt{2}}}{4}}}

\sf\implies{ {\purple{\underline{\boxed{\sf{\pmb{2+4{\sqrt{2}}~,~~2-4{\sqrt{2}}}}}}}}}

∴ Required answer :

Roots are :

\sf{{\purple{\pmb{2+4{\sqrt{2}}}}}~~and~~{\purple{\pmb{2-4{\sqrt{2}}}}}}

Similar questions