Hey!!
If , sinθ + sin²θ=1 then cos²θ + cos⁴θ = ?
Answers
Answered by
37
Here is your solution
If , sinθ + sin²θ=1---------------(1)
then cos²θ + cos⁴θ = ?
From equation (1)
sinθ + sin²θ=1
sin²θ=1-sinθ
(we know that sin²θ=1-cos²θ)
1-cos²θ=1-sinθ
cos²θ=sinθ
cos⁴θ =sin²θ
Now
cos⁴θ =sin²θ
cos⁴θ=1-cos²θ
cos²θ+cos⁴θ=1✔
hopeit helps you
If , sinθ + sin²θ=1---------------(1)
then cos²θ + cos⁴θ = ?
From equation (1)
sinθ + sin²θ=1
sin²θ=1-sinθ
(we know that sin²θ=1-cos²θ)
1-cos²θ=1-sinθ
cos²θ=sinθ
cos⁴θ =sin²θ
Now
cos⁴θ =sin²θ
cos⁴θ=1-cos²θ
cos²θ+cos⁴θ=1✔
hopeit helps you
sidra1784:
Nice Mohit..
Answered by
18
Answer :-
______________________
Given ,
sinθ + sin²θ = 1
To find ,
The value of : cos²θ + cos⁴θ
Now ,
sinθ + sin²θ = 1
sinθ = 1 - sin²θ
sinθ = cos²θ ---------- ( i )
[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]
★ Method - 1
sinθ = cos²θ
( sinθ )² = ( cos²θ )²
sin²θ = cos⁴θ
1 - cos²θ = cos⁴θ
cos⁴θ + cos²θ = 1 [ ★ Required answer ]
__________________
★ Method - 2
cos²θ + cos⁴θ
= sinθ + ( sinθ )²
[ • Putting the value of cos²θ = sinθ ]
= sinθ + sin²θ
= 1 [ • Given , sinθ + sin²θ = 1 ]
• So finally ,
[ cos²θ + cos⁴θ = 1 ]
______________________________
★ Be Brainly ★
______________________
Given ,
sinθ + sin²θ = 1
To find ,
The value of : cos²θ + cos⁴θ
Now ,
sinθ + sin²θ = 1
sinθ = 1 - sin²θ
sinθ = cos²θ ---------- ( i )
[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]
★ Method - 1
sinθ = cos²θ
( sinθ )² = ( cos²θ )²
sin²θ = cos⁴θ
1 - cos²θ = cos⁴θ
cos⁴θ + cos²θ = 1 [ ★ Required answer ]
__________________
★ Method - 2
cos²θ + cos⁴θ
= sinθ + ( sinθ )²
[ • Putting the value of cos²θ = sinθ ]
= sinθ + sin²θ
= 1 [ • Given , sinθ + sin²θ = 1 ]
• So finally ,
[ cos²θ + cos⁴θ = 1 ]
______________________________
★ Be Brainly ★
Similar questions