Math, asked by riju18, 1 year ago

Hey!!

If , sinθ + sin²θ=1 then cos²θ + cos⁴θ = ?

Answers

Answered by SmãrtyMohït
37
Here is your solution

If , sinθ + sin²θ=1---------------(1)
then cos²θ + cos⁴θ = ?

From equation (1)

sinθ + sin²θ=1

sin²θ=1-sinθ
(we know that sin²θ=1-cos²θ)

1-cos²θ=1-sinθ
cos²θ=sinθ
cos⁴θ =sin²θ
Now

cos⁴θ =sin²θ
cos⁴θ=1-cos²θ
cos²θ+cos⁴θ=1✔

hopeit helps you

sidra1784: Nice Mohit..
sidra1784: ✌✌
Answered by Ashishkumar098
18
Answer :-

______________________

Given ,

sinθ + sin²θ = 1

To find ,

The value of : cos²θ + cos⁴θ

Now ,

sinθ + sin²θ = 1

sinθ = 1 - sin²θ

sinθ = cos²θ ---------- ( i )

[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]

★ Method - 1

sinθ = cos²θ

( sinθ )² = ( cos²θ )²

sin²θ = cos⁴θ

1 - cos²θ = cos⁴θ

cos⁴θ + cos²θ = 1 [ ★ Required answer ]

__________________

★ Method - 2


cos²θ + cos⁴θ

= sinθ + ( sinθ )²

[ • Putting the value of cos²θ = sinθ ]

= sinθ + sin²θ

= 1 [ • Given , sinθ + sin²θ = 1 ]

• So finally ,

[ cos²θ + cos⁴θ = 1 ]

______________________________

★ Be Brainly ★

Ashishkumar098: sinθ + sin²θ = 1
Ashishkumar098: put this in your answer
Ashishkumar098: in last
Ashishkumar098: then , cos²θ + cos⁴θ = 1
Ashishkumar098: Edit that please
riju18: Nice answer !¡ Thanks a lot sir! :)
Ashishkumar098: Mention not :)
Similar questions