hey
if sin theta + sin2 theta = 1 then cos2 theta + cos4 theta = ?
Answers
Answered by
462
Answer :-
______________________
• Given :-
sinθ + sin²θ = 1
• To find :-
The value of : cos²θ + cos⁴θ
• Salutation :-
sinθ + sin²θ = 1
sinθ = 1 - sin²θ
sinθ = cos²θ ---------- ( i )
[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]
★ Method - 1
sinθ = cos²θ
( sinθ )² = ( cos²θ )²
sin²θ = cos⁴θ
1 - cos²θ = cos⁴θ
cos⁴θ + cos²θ = 1 [ ★ Required answer ]
__________________
★ Method - 2
cos²θ + cos⁴θ
= sinθ + ( sinθ )²
[ • Putting the value of cos²θ = sinθ ]
= sinθ + sin²θ
= 1 [ • Given , sinθ + sin²θ = 1 ]
• So finally ,
[ cos²θ + cos⁴θ = 1 ]
______________________________
★ Be Brainly ★
______________________
• Given :-
sinθ + sin²θ = 1
• To find :-
The value of : cos²θ + cos⁴θ
• Salutation :-
sinθ + sin²θ = 1
sinθ = 1 - sin²θ
sinθ = cos²θ ---------- ( i )
[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]
★ Method - 1
sinθ = cos²θ
( sinθ )² = ( cos²θ )²
sin²θ = cos⁴θ
1 - cos²θ = cos⁴θ
cos⁴θ + cos²θ = 1 [ ★ Required answer ]
__________________
★ Method - 2
cos²θ + cos⁴θ
= sinθ + ( sinθ )²
[ • Putting the value of cos²θ = sinθ ]
= sinθ + sin²θ
= 1 [ • Given , sinθ + sin²θ = 1 ]
• So finally ,
[ cos²θ + cos⁴θ = 1 ]
______________________________
★ Be Brainly ★
Answered by
134
Heya..
Here is your answer...
Given,
sinθ + sin^2 θ = 1
or, sinθ + sin^2 θ = sin^2 θ + cos^2 θ
or, cos^2 θ= sin θ, ….(1) , squaring both side
or, cos^4 θ = sin^2 θ ….(2) , adding equation (1) & (2),
cos^2 θ+cos^4 θ = sin θ + sin^2 θ = 1 ( given)
Therefore cos^2 θ + cos^4 θ= 1
Itmay help you...☺☺
Here is your answer...
Given,
sinθ + sin^2 θ = 1
or, sinθ + sin^2 θ = sin^2 θ + cos^2 θ
or, cos^2 θ= sin θ, ….(1) , squaring both side
or, cos^4 θ = sin^2 θ ….(2) , adding equation (1) & (2),
cos^2 θ+cos^4 θ = sin θ + sin^2 θ = 1 ( given)
Therefore cos^2 θ + cos^4 θ= 1
Itmay help you...☺☺
ronilrocky:
Hi
Similar questions