Hey!!
If , x=4+√15 then find the value of x³- 1/x³
Answers
Answered by
6
Answer :-
_____________________________
Given :-
x = ( 4 + √15 )
To find :-
Salutation :-
Given , x = ( 4 + √15 )
Then ,
1 / x = 1 / ( 4 + √15 )
= 1 / ( 4 + √15 ) × 1
= 1 / ( 4 + √15 ) × ( 4 - √15 ) / ( 4 - √15 )
= ( 4 - √15 ) / { ( 4 + √15 ) × ( 4 - √15 ) }
= ( 4 - √15 ) / ( 4 )² - ( √15 )²
[ • As we know , a² - b² = ( a + b ) ( a - b ) ]
= ( 4 - √15 ) / ( 16 - 15 )
= ( 4 - √15 ) / 1
= ( 4 - √15 )
So ,
= ( 4 + √15 ) - ( 4 - √15 )
= 4 + √15 - 4 + √15
= + 2√15
Therefore ,
= ( x - 1 / x )³ + 3 × x × 1 / x ( x - 1 / x ) [ • Using identity ]
= ( 2√15 )³ + 3 × 2√15
= 8 × 15√15 + 6√15
= 120√15 + 6√15
= 126√15 [ ★ Required answer ]
•°• The value of x³ - 1 / x³ is 126√15.
__________________________________
_____________________________
Given :-
x = ( 4 + √15 )
To find :-
Salutation :-
Given , x = ( 4 + √15 )
Then ,
1 / x = 1 / ( 4 + √15 )
= 1 / ( 4 + √15 ) × 1
= 1 / ( 4 + √15 ) × ( 4 - √15 ) / ( 4 - √15 )
= ( 4 - √15 ) / { ( 4 + √15 ) × ( 4 - √15 ) }
= ( 4 - √15 ) / ( 4 )² - ( √15 )²
[ • As we know , a² - b² = ( a + b ) ( a - b ) ]
= ( 4 - √15 ) / ( 16 - 15 )
= ( 4 - √15 ) / 1
= ( 4 - √15 )
So ,
= ( 4 + √15 ) - ( 4 - √15 )
= 4 + √15 - 4 + √15
= + 2√15
Therefore ,
= ( x - 1 / x )³ + 3 × x × 1 / x ( x - 1 / x ) [ • Using identity ]
= ( 2√15 )³ + 3 × 2√15
= 8 × 15√15 + 6√15
= 120√15 + 6√15
= 126√15 [ ★ Required answer ]
•°• The value of x³ - 1 / x³ is 126√15.
__________________________________
Answered by
0
====================================
• x = 4 + √15
• Then,
(1/x) = (1/4 + √15)
Multiplying with the conjugate -
(1/x)
= (1/4 + √15) × (4 - √15/4 - √15)
= (1 × 4 - √15)/(4² - √15²)
= (4 - √15)/(16 - 15)
= (4 - √15)/1
= 4 - √15
• So, (1/x) = 4 - √15
• Now, x - (1/x)
= 4 + √15 - (4 - √15)
= 4 + √15 - 4 + √15
= 2√15
• So, x - (1/x) = 2√15
• Now, cubing both sides
[x - (1/x)]³ = [2√15]³
•Using identity : (a - b)³ = a³ - b³ - 3ab(a - b)
=> x³ - (1/x³) - (3 × x × (1/x)) (x - (1/x)) = 2³ × √15³
=> x³ - (1/x³) - 3 (2√15) = 8 × 15√15
=> x³ - (1/x³) - 6√15 = 120√15
=> x³ - (1/x³) = 120√15 + 6√15
=> x³ - (1/x³) = 126√15.....
====================================
Thank you.. ;-)
Similar questions