Math, asked by MeSrijal, 1 year ago

Hey mate!!

Find the square root of :-
3 +  \sqrt{2}

Please explain also.
⚠Spammers not allowed.⚠​

Answers

Answered by pratyush4211
4

3 +  \sqrt{2}

We have To Find Square Root Of it.

Square Root of a=√a

So Write Given In Form of √

 \sqrt{3 +  \sqrt{2} }

Let

 \sqrt{3 +  \sqrt{2} }  =  \sqrt{x}  +  \sqrt{y}  \\  \\ 3 +  \sqrt{2}  = ( \sqrt{x}  +  \sqrt{y} ) {}^{2}  \\  \\ 3 +  \sqrt{2}  =  { \sqrt{x} }^{2}  +  { \sqrt{y} }^{2}  + 2 \sqrt{xy}  \\  \\  3 +  \sqrt{2}  = x + y + 2 \sqrt{xy}

Comparing Both sides.

We get.

x+y=3

2(xy)=2

2 \sqrt{xy}  =  \sqrt{2}  \\  \\  \sqrt{xy}  =  \frac{1}{2}  \times  \sqrt{2}  \\  \\ xy =  (\frac{1}{2}  \times  \sqrt{2} ) {}^{2}  \\  \\ xy =  \frac{1}{4}  \times 2 \\  \\

Y=1/4×2

X=1/4

Y=2

Square Root was

√x+√y

√1/4+√2

1/2+√2

 \huge \boxed {\sqrt{3 +  \sqrt{2} }  =  \frac{1}{2}  +   \sqrt{2} }


pratyush4211: Check
Anonymous: perfect
pratyush4211: thanks sir
Similar questions