HEY MATE!
HELP ME SOLVE THIS QUESTION :
⭐FIND THE POSITIVE FRACTION LESS THAN 1 WHOSE SUM OF THE NUMERATOR AND THE DENOMINATOR IS 10,AND THE DIFFERENCE OF THE FRACTION AND ITS RECIPROCAL IS 40/21.⭐
CLASS:10 CHAPTER :QUADRATIC EQUATIONS
❌NO SPAM❌
BEST ANSWER WILL BE MARKED AS BRAINLIEST
Answers
Here's your answer...
Let the numerator be 10-x, then the denominator will be x
Since the numerator cannot be negative in this case as that will make the denominator positive and the fraction negative, x = 7
The fraction will be 3/7
[0110100101]... More questions detected... [010110011110]
//Bot UnknownDude is moving on to more queries
//This is your friendly neighbourhood UnknownDude
Let the numerator be x and the denominator be 10 - x.
The original fraction is x/10 - x.
Given that Difference of the fraction and its reciprocal is 40/21.
⇒ (x/10 - x) + (10 - x/x) = 40/21
⇒ 21x^2 - 21(10 - x)^2 = 40x(-x + 10)
⇒ 21x^2 - 21(100 + x^2 - 20x) = -40x^2 + 400x
⇒ 21x^2 - 2100 - 21x^2 + 420x = -40x^2 + 400x
⇒ -40x^2 - 20x + 2100 = 0
⇒ 40x^2 + 20x - 2100 = 0
⇒ 20(2x^2 + x - 105) = 0
⇒ 2x^2 + x - 105 = 0
⇒ 2x^2 + 15x - 14x - 105 = 0
⇒ x(2x + 15) - 7(2x + 15) = 0
⇒ (x - 7)(2x + 15) = 0
⇒ x = 7, -15/2{Neglect}
∴ Required fraction is 7/3, Which is not valid because it is not < 1.
------------------------------------------------------------------------------------------------------
Let the numerator be 10 - x and the denominator be x.
The original fraction is 10 - x/x.
The reciprocal = (x/10 - x).
Given that Difference of the fraction and its reciprocal is 40/21.
⇒ (10 - x/x) - (x/10 - x) = 40/21
⇒ 21(10 - x)^2 - 21x^2 = 40x(-x + 10)
⇒ 21(100 + x^2 - 20x) - 21x^2 = -40x + 400x
⇒ 2100 + 21x^2 - 420x - 21x^2 = -40x + 400x
⇒ -40x^2 + 820x = 2100
⇒ -40x^2 + 820x - 2100 = 0
⇒ 40x^2 - 820x + 2100 = 0
⇒ 20(2x^2 - 41x + 105) = 0
⇒ 2x^2 - 41x + 105 = 0
⇒ 2x^2 - 35x - 6x + 105 = 0
⇒ x(2x - 35) - 3(2x - 35) = 0
⇒ (x - 3)(2x - 35) = 0
⇒ x = 3, 35/2.
⇒ x = 3.
∴ Required fraction = 3/7.
Hope this helps!