Hey mate please answer my question with step by step explanation
Answers
Question:-
Find the inverse of the non singular matrix
and reduce it to the identity by elminatory transmittion
Solution:-
Property of A inverse is
Now we find co - factor, we get
Now we will find
we get
Now find
Take determinant wrt a₁₁ we get
Put the value on property, we get
Property of A inverse is
\rm \: A {}^{ - 1} = \dfrac{1}{ |A| } adjAA
−1
=
∣A∣
1
adjA
Now we find co - factor, we get
\begin{gathered}\rm \: A= \begin{vmatrix}3& 4& - 1\\1 & 2 & 0\\ - 1& - 1 & 1\end{vmatrix}\end{gathered}
A=
∣
∣
∣
∣
∣
∣
∣
3
1
−1
4
2
−1
−1
0
1
∣
∣
∣
∣
∣
∣
∣
\begin{gathered}\rm \: A= \begin{vmatrix} 3& - 4& - 1\\ - 1 & 2 & 0\\ - 1& 1 & 1\end{vmatrix}\end{gathered}
A=
∣
∣
∣
∣
∣
∣
∣
3
−1
−1
−4
2
1
−1
0
1
∣
∣
∣
∣
∣
∣
∣
Now we will find
\rm \: adjA {}^{T}adjA
T
we get
\begin{gathered}\rm \: adjA= \begin{vmatrix} 3& - 1& - 1\\ - 4 & 2 & 1\\ - 1& 0& 1\end{vmatrix}\end{gathered}
adjA=
∣
∣
∣
∣
∣
∣
∣
3
−4
−1
−1
2
0
−1
1
1
∣
∣
∣
∣
∣
∣
∣
Now find
\rm \: |A|∣A∣
Take determinant wrt a₁₁ we get
\rm \: |A| = 3∣A∣=3
Put the value on property, we get
\begin{gathered}\rm \: A {}^{ - 1} = \frac{1}{3} \begin{vmatrix} 3& - 1& - 1\\ - 4 & 2 & 1\\ - 1& 0& 1\end{vmatrix}\end{gathered}
A
−1
=
3
1
∣
∣
∣
∣
∣
∣
∣
3
−4
−1
−1
2
0
−1
1
1
∣
∣
∣
∣
∣
∣
∣