Math, asked by Anonymous, 1 year ago

hey mate please solve hey mate solve it please .​

Attachments:

Answers

Answered by Anonymous
3

SOLUTION:-

Given:

(1+4x²)cosA = 4x

Therefore,

secx =  \frac{1 + 4 {x}^{2} }{4x}  =  \frac{Hypotenuse}{Base}

So,

Using Pythagoras rule;

Perpendicular =  \sqrt{(1 + 4 {x}^{2} ) {}^{2} - (16{x}^{2}   }   )  {}  \\  \\  =  > \sqrt{1 + 16 {x}^{4}  + 8 {x}^{2}  - 16 {x}^{2} }  \\  \\  =  >  \sqrt{(1 - 4 {x}^{2} ) {}^{2} }  \\  \\  =  > 1  - 4 {x}^{2}

Now,

cosecA  - cotA =  \frac{1 - 4 {x}^{2} }{1 + 4 {x}^{2} }  -  \frac{1  - 4 {x}^{2} }{4x}  \\  \\  =  >  \frac{(1 - 2x)(1 + 2x)}{(1 + 2x) {}^{2} }  \\  \\  =  >  \frac{(1 - 2x)}{(1 + 2x)}

Proved.

Hope it helps ☺️

Answered by Anonymous
2

Step-by-step explanation:

Hola mate!!!!

Given that

(1+4x^2) Cos A = 4x

 \cos(a)  =  \frac{4x}{(1 + 4 {x}^{2}) }

we \: know \: that =  >  \\  \cos(a)  =  \frac{base}{hypo}

now \: comparing \: it \: we \: will \: get

base = 4x \: and \: hypo = (1 + 4 {x}^{2} )

so \: perpendicular \: will \: be \: (1 - 4 {x}^{2} )

 \csc(a)  =  \frac{hypo}{perpendicular}

 \csc(a)  =  \frac{(1 + 4 {x}^{2}) }{(1 - 4 {x}^{2} )}

 \cot(a)  =  \frac{base}{perpendicular}

 \cot(a)  =  \frac{4x}{(1 - 4 {x}^{2} )}

 \csc(a)  +  \cot( a)   \\ =  \frac{(1 + 4 {x}^{2}) }{(1 - 4 {x}^{2} )}  +  \frac{4x}{(1 - 4 {x}^{2} )}

 =  \frac{1 + 4 {x}^{2} + 4x }{(1 - 4  {x}^{2}  )}

 =  \frac{ {1 + 2x}^{2} }{(1 - 2x)(1 + 2x)}

 =  \frac{(1 + 2x)}{(1 - 2x)}

hope \: it \: helps \: uh.....

Similar questions