hey mate prove it please ....
Answers
SOLUTION:-
Given:
⚫x=cy +bz
⚫y=az+ cx
⚫z=bx + ay
To prove:
Proof:
Putting the value of x in y;
Similarly, putting equation (1) in z, we get;
Equating equation (1) & (2), w get;
Similarly, by solving z & x by using value of y, we get;
Equation by (3) & (4), we get;
Hence,
Proved.
Hope it helps ☺️
Answer:
SOLUTION:-
Given:
⚫x=cy +bz
⚫y=az+ cx
⚫z=bx + ay
To prove:
\frac{ {x}^{2} }{1 - {a}^{2} } = \frac{ {y}^{2} }{1 - {b}^{2} } = \frac{ {z}^{2} }{1 - {c}^{2} }
1−a
2
x
2
=
1−b
2
y
2
=
1−c
2
z
2
Proof:
Putting the value of x in y;
\begin{gathered}y = az + c(cy + bz) \\ \\ y = z(a + bc) + {c}^{2y} \\ \\ y(1 - {c}^{2} ) = z(a + bc) \\ \\ (a + bc) = \frac{y(1 - {c}^{2} )}{z} .............(1)\end{gathered}
y=az+c(cy+bz)
y=z(a+bc)+c
2y
y(1−c
2
)=z(a+bc)
(a+bc)=
z
y(1−c
2
)
.............(1)
Similarly, putting equation (1) in z, we get;
(a + bc) = \frac{z(1 - {b}^{2} )}{y}................(2)(a+bc)=
y
z(1−b
2
)
................(2)
Equating equation (1) & (2), w get;
\frac{ {y}^{2} }{(1 - {b}^{2} )} = \frac{ {z}^{2} }{(1 - {c}^{2} )} ...............(3)
(1−b
2
)
y
2
=
(1−c
2
)
z
2
...............(3)
Similarly, by solving z & x by using value of y, we get;
\frac{ {x}^{2} }{(1 - {a}^{2}) } = \frac{ {z}^{2} }{(1 - {c}^{2} )} ..............(4)
(1−a
2
)
x
2
=
(1−c
2
)
z
2
..............(4)
Equation by (3) & (4), we get;
= > \frac{ {x}^{2} }{(1 - {a}^{2} )} = \frac{ {y}^{2} }{(1 - {b}^{2}) } = \frac{ {z}^{2} }{(1 - {c}^{2} )}=>
(1−a
2
)
x
2
=
(1−b
2
)
y
2
=
(1−c
2
)
z
2
Hence,
Proved.