Math, asked by Anonymous, 11 months ago

hey mate prove it please ....​

Attachments:

Answers

Answered by Anonymous
37

SOLUTION:-

Given:

⚫x=cy +bz

⚫y=az+ cx

⚫z=bx + ay

To prove:

  \frac{ {x}^{2} }{1 -  {a}^{2} } =  \frac{ {y}^{2} }{1 -  {b}^{2} }  =  \frac{ {z}^{2} }{1 -  {c}^{2} }

Proof:

Putting the value of x in y;

y = az + c(cy + bz) \\  \\ y = z(a + bc) +  {c}^{2y}  \\  \\ y(1 -  {c}^{2} ) = z(a + bc) \\  \\  (a + bc) =  \frac{y(1 -  {c}^{2} )}{z} .............(1)

Similarly, putting equation (1) in z, we get;

(a + bc) =  \frac{z(1 -  {b}^{2} )}{y}................(2)

Equating equation (1) & (2), w get;

 \frac{ {y}^{2} }{(1 -  {b}^{2} )}  =  \frac{ {z}^{2} }{(1 -  {c}^{2} )} ...............(3)

Similarly, by solving z & x by using value of y, we get;

 \frac{ {x}^{2} }{(1 -  {a}^{2}) }  =  \frac{ {z}^{2} }{(1 -  {c}^{2} )} ..............(4)

Equation by (3) & (4), we get;

 =  >  \frac{ {x}^{2} }{(1 -  {a}^{2} )} =   \frac{ {y}^{2} }{(1 -  {b}^{2}) }  =  \frac{ {z}^{2} }{(1 -  {c}^{2} )}

Hence,

Proved.

Hope it helps ☺️

Answered by cutiepieangel123
5

Answer:

SOLUTION:-

Given:

⚫x=cy +bz

⚫y=az+ cx

⚫z=bx + ay

To prove:

\frac{ {x}^{2} }{1 - {a}^{2} } = \frac{ {y}^{2} }{1 - {b}^{2} } = \frac{ {z}^{2} }{1 - {c}^{2} }

1−a

2

x

2

=

1−b

2

y

2

=

1−c

2

z

2

Proof:

Putting the value of x in y;

\begin{gathered}y = az + c(cy + bz) \\ \\ y = z(a + bc) + {c}^{2y} \\ \\ y(1 - {c}^{2} ) = z(a + bc) \\ \\ (a + bc) = \frac{y(1 - {c}^{2} )}{z} .............(1)\end{gathered}

y=az+c(cy+bz)

y=z(a+bc)+c

2y

y(1−c

2

)=z(a+bc)

(a+bc)=

z

y(1−c

2

)

.............(1)

Similarly, putting equation (1) in z, we get;

(a + bc) = \frac{z(1 - {b}^{2} )}{y}................(2)(a+bc)=

y

z(1−b

2

)

................(2)

Equating equation (1) & (2), w get;

\frac{ {y}^{2} }{(1 - {b}^{2} )} = \frac{ {z}^{2} }{(1 - {c}^{2} )} ...............(3)

(1−b

2

)

y

2

=

(1−c

2

)

z

2

...............(3)

Similarly, by solving z & x by using value of y, we get;

\frac{ {x}^{2} }{(1 - {a}^{2}) } = \frac{ {z}^{2} }{(1 - {c}^{2} )} ..............(4)

(1−a

2

)

x

2

=

(1−c

2

)

z

2

..............(4)

Equation by (3) & (4), we get;

= > \frac{ {x}^{2} }{(1 - {a}^{2} )} = \frac{ {y}^{2} }{(1 - {b}^{2}) } = \frac{ {z}^{2} }{(1 - {c}^{2} )}=>

(1−a

2

)

x

2

=

(1−b

2

)

y

2

=

(1−c

2

)

z

2

Hence,

Proved.

Similar questions