Hey.....
PLEASE ANSWER THIS QUESTION.
I WILL MARK BRAINLIEST.
NO SPAMMING
Answers
We have, AP 1,6,11,16,.............x
a=1 and d = 5
Let an = x
a + (n-1)d = x
1 + 5n-5 = x
so, 5n - 4 = x
n = x+4/5 .........................................(1)
We have, Sn = 148
n/2[a+an] = 148
n/2[1+x] = 148
so, n[1+x] = 296
By using (1)
x+4/5[1+x] = 296
[x+4](x+1) = 1480
so, x²+5x+4 = 1480
so, x²+5x - 1476 = 0
so, x² + 41x- 36x - 1476 = 0
= x(x+41) -36(x+41)
so, x = 36,-41
⚠
In given A.P., it can be noted that a = 1, d = 5 and nth term (An) = x.
Given that the sum is 148,
Sn = n/2(a+An) = 148
=> 148 = n/2(1 +x)
=> 296 = n(1+x). -(1)
Also, An = a + (n-1)d
=> x = 1 + (n-1)5
=> (x-1)/5 + 1 = n
=> (x+4)/5 = n -(2).
Substituting value of n from (2) in (1),
=> 296 = (x+4)(1+x)/5
=> 1480 = x(1+x) +4(1+x)
=> x²+x+4x+4-1480=0
=> x² + 5x - 1476 = 0
=> x² + 41x - 36x -1476 =0
=> (x-36)(x+41) = 0
=> x = 36, -41..
But, x can't be negative.... (given A.P. is positive)
=> x= 36