hey
please solve vi and. viii
Attachments:
Answers
Answered by
6
Answer:
Question: viii
To prove;
(sinA + cosecA)^2 + (cosA + secA)^2
= 7 + (tanA)^2 + (cotA)^2
Proof:
LHS=(sinA+cosecA)^2 + (cosA+secA)^2 = (sinA)^2+(cosecA)^2 + 2sinA•cosecA
+(cosA)^2 + (secA)^2 + 2cosA•secA
= (sinA)^2 + (cosecA)^2 + 2sinA(1/sinA)
+(cosA)^2 + (secA)^2 + 2cosA(1/cosA)
= (sinA)^2 + (cosecA)^2 + 2 + (cosA)^2
+ (secA)^2 + 2
= {(sinA)^2 + (cosA)^2} + (cosecA)^2
+ (secA)^2 + 4
= 1 + {(cotA)^2 + 1} + {(tanA)^2 + 1} + 4
= 7 + (tanA)^2 + (cotA)^2
= RHS.
Hence proved.
For question:vi, refer to the attachment
Attachments:
Similar questions