Math, asked by BrainlyRaaz, 7 months ago

Hey Public,

If cosec theta = 41/40, find the value of cot theta and sec theta.

Let's Do copy paste.


Answers

Answered by Anonymous
29

Answer:

hope this helps you dear

Attachments:
Answered by TheProphet
4

S O L U T I O N :

\underline{\bf{Given\::}}

cosec Ф = 41/40

\underline{\bf{Explanation\::}}

Firstly, attachment a figure of right angled triangle according to the given question.

As we know that,

\boxed{\bf{cosec\:\theta = \frac{Hypotenuse}{Perpendicular} }}

\mapsto\tt{cosec\:\theta = \dfrac{41}{40} =\dfrac{BC}{AC} }

A/q

\underline{\mathcal{\red{USING\:\:BY\:\:PYTHAGORAS\:\:THEOREM\::}}}

\mapsto\sf{(Hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2}}

\mapsto\sf{(BC)^{2} = (AB)^{2} + (AC)^{2}}

\mapsto\sf{(41)^{2} = (AB)^{2} + (40)^{2}}

\mapsto\sf{1681= (AB)^{2} + 1600}

\mapsto\sf{(AB)^{2} = 1681 - 1600}

\mapsto\sf{(AB)^{2} = 81}

\mapsto\sf{AB =\sqrt{81} }

\mapsto\sf{AB =9\:unit}

Now,

\boxed{\bf{cot\:\theta = \frac{Base}{Perpendicular} }}

\mapsto\tt{cot \:\theta = \dfrac{AB}{AC} }

\mapsto\tt{cot \:\theta = \dfrac{9}{40} }

&

\boxed{\bf{sec\:\theta = \frac{Hypotenuse}{Base} }}

\mapsto\tt{sec \:\theta = \dfrac{BC}{AB} }

\mapsto\tt{sec \:\theta = \dfrac{41}{9} }

Thus,

The value of cot Ф & sec Ф will be 9/40 & 41/9 .

Attachments:
Similar questions