Math, asked by mehaksan41, 10 months ago

if alpha and beta are zeros of the equation 6x^2+x-2=0.find alpha divide by beta +beta divide by alpha. if one of the zero of the polynomial 2x^2+4=0 is R. find the other zero also find the value of P​.

please please please answer me soon. I need help of you guys.

Answers

Answered by Anonymous
3

  \underline{\underline{ \bf{Answer}}} :  -  \\  \implies \:  -  \frac{25}{12}  \\    \\  \underline{\underline{\bf{Explanation}}} :  -

According to the question

  \bf{\alpha  \: and \:  \beta  \: are \: zeros \: of \: equation} \:  \\  \\  \bf{ 6 {x}^{2}  + x - 2 = 0}

We know that,

 \bf{sum \: of \: zeros \: ( \alpha  +  \beta ) =  \frac{ - coefficient \: of \: x}{coefficient \: of\:  {x}^{2} } } \\  \\ \bf{ ( \alpha  +  \beta ) =  \frac{ - 1}{6} }

And ,

 \bf{product \: of \: roots \: ( \alpha  \beta ) =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } } \\  \\  \bf{ \alpha  \beta  =  \frac{ - 2}{6} }

Now ,

We find →

 \bf{ \implies \:   \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha } } \\  \\ \bf{  \implies \:  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta } } \\  \\  \implies \:  \bf{ \frac{ {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ \alpha  \beta } } \\  \\

Now ,Given above ,

 \implies \:  \frac{(  { \frac{ - 1}{6}) }^{2} }{ \frac{ - 2}{6} }  - 2 \\  \\  \implies \:  \frac{1}{36}  \times  \frac{ - 6}{2}   - 2 \\  \\  \implies \:  \frac{ - 1}{12}  - 2 =  -  \frac{25}{12}

Similar questions