Math, asked by Klrahulhere, 28 days ago

hey #Quality Question
@Trigonometry

If θ is Acute angle and 3sinθ = 4cosθ then Find out the value of 4sin2θ - 3cos2θ + 2.

Answers

Answered by Itzheartcracer
2

Given :-

If θ is angle and 3sinθ = 4cosθ

To Find :-

the value of 4sin²θ - 3cos²θ + 2.

​Solution :-

3 sinθ = 4 cosθ

4/3 = sinθ/cosθ

Now, We know that

sinθ/cosθ = tanθ

4/3 = tanθ

On squaring both sides we get

(4/3)² = (tanθ)²

16/9 = tan²θ

sec²θ = 1 + tan²θ

sec²θ = 1 + 16/9

sec²θ = 9 + 16/9

sec²θ = 25/9

On rooting both sides

√(sin²θ) = √(25/9)

sinθ = 5/3

Now

cosθ = 1/sinθ

cosθ = 1/(5/3)

cosθ = 3/5

Now

sinθ = √(1 - cos²θ)

sinθ = √[1 - (3/5)²]

sinθ = √[1 - 9/25]

sinθ = √[25 - 9/25]

sinθ = √[16/25]

sinθ = 4/5

Finding the value

4 × (4/5)² - 3 × (3/5)² + 2

4 × (16/25) - 3 × (9/25) + 2

64/25 - 27/25 + 2

87/25

Answered by rosey25
111

Answer:

Given:-

3sinθ = 4cosθ

 \frac{sinθ}{cosθ}  =  \frac{4}{3}

tanθ =  \frac{4}{3}

By Pythagoras theorem

ac {}^{2}  = ab {}^{2}  + bc {}^{2}

ac {}^{2}  = (4) {}^{2}  + (3) {}^{2}

ac {}^{2}  = 16 + 9

ac {}^{2}  = 25

ac =  \sqrt{25}  = 5

ac = 5

 \sinθ =  \frac{ab}{ac}  =  \frac{4}{5}

 \cosθ =  \frac{bc}{ac}  =  \frac{3}{5}

Given that,

4sin^2 θ - 3cos^2 θ + 2

4 \times ( \frac{4}{5} ) {}^{2}  - 3 \times ( \frac{3}{5})  {}^{2}  + 2

 \frac{64}{25}  -  \frac{27}{25}  +  \frac{50}{25}

 =  \frac{87}{25} answer

hope it helps you

Similar questions