Math, asked by Apshrivastva, 1 year ago

hey solve ....find the value of n

no spam

Attachments:

Answers

Answered by hukam0685
4

 \frac{ {3}^{2n} \times  {3}^{2 + n}   -  {3}^{3n} }{ {3}^{15}  \times  {2}^{3} }  =  {3}^{ - 3}  \\  \frac{ {3}^{2n + 2 + n} -   {3}^{3n}   }{ {2}^{3} }  =  {3}^{15}  \times  {3}^{ - 3}  \\  \frac{ {3}^{3n + 2}  -  {3}^{3n}  }{8}  =  {3}^{12}  \\  \frac{ {3}^{3n} ( {3}^{2} - 1) }{8}  =  {3}^{12}  \\  \frac{ {3}^{3n}(9 - 1) }{8}  =  {3}^{12}  \\  \frac{ {3}^{3n} \times 8 }{8}  =  {3}^{12} \\  {3}^{3n}  =  {3}^{12}  \\ compare \: the \: powers \\  3n = 12 \\ n =  \frac{12}{3}  \\ n = 4 \:  \:  \:  \: answer

Apshrivastva: in the fourth step from where 1 come from
Apshrivastva: plz tell sir
hukam0685: when taking 3^3n comman,from both terms,one left behind from second term
Apshrivastva: got it
Apshrivastva: thnx sir
hukam0685: your welcome
Similar questions