Math, asked by prajwal124421, 1 year ago

HEY solve this one !!

Attachments:

Answers

Answered by VinayakTripathi2002
1
1 = Sec²theta - tan²theta
Attachments:

prajwal124421: cool
shadowsabers03: Yeah!
Answered by shadowsabers03
0

               

$$\sf{Using the ldentities}$\ \ \sec^2\theta-\tan^2\theta=1\ \ $\sf{\&}$\ \ \sin\theta=\tan\theta \cdot \cos\theta,

\boxed{$LHS$} \\ \\ \\ \boxed{\frac{1+\sec\theta-\tan\theta}{1+\sec\theta+\tan\theta}} \\ \\ \\ \boxed{\frac{(1+\sec\theta-\tan\theta)(\sec\theta-\tan\theta)}{(1+\sec\theta+\tan\theta)(\sec\theta-\tan\theta)}} \\ \\ \\ \boxed{\frac{(1+\sec\theta-\tan\theta)(\sec\theta-\tan\theta)}{\sec\theta-\tan\theta+\sec^2\theta-\tan^2\theta}}

\boxed{\frac{(1+\sec\theta-\tan\theta)(\sec\theta-\tan\theta)}{\sec\theta-\tan\theta+1}} \\ \\ \\ \boxed{\frac{(1+\sec\theta-\tan\theta)(\sec\theta-\tan\theta)}{1+\sec\theta-\tan\theta}} \\ \\ \\ \boxed{\sec\theta-\tan\theta} \\ \\ \\ \boxed{\frac{1}{\cos\theta}-\tan\theta} \\ \\ \\ \boxed{\frac{1-\tan\theta \cdot \cos\theta}{\cos\theta}} \\ \\ \\ \boxed{\frac{1-\sin\theta}{\cos\theta}} \\ \\ \\ \boxed{$RHS$}

$$\sf{Hence proved! \\ \\ \\ Plz mark it as the brainliest. \\ \\ \\ Thank you. :-)}

           


prajwal124421: wow
shadowsabers03: Yep!
Similar questions