Hey !✌️
The sum of three numbers in GP is 39/10 and their product is 1. Find the numbers.
Answers
a + ar + ar.r = 39/10
a( 1 + r + r.r ) = 3.9
Also a.ar.ar.r = 1
a^3 r^3 = 1
ar = 1
a = 1/r
(1 + r +r.r)/r = 39/10
10 + 10 r + 10 r.r - 39 r= 0
10 r.r -29 r + 10 = 0
10r.r -25 r -4 r +10=0
5r ( 2 r -5) - 2( 2r -5) = 0
r = 2/5, 5/2
so a = 5/2,2/5
Answer:
5/2, 1, 2/5 (or) 2/5,1,5/2.
Step-by-step explanation:
Let the three numbers in GP be a, ar, ar²
(i)
Given that Sum of three numbers is (39/10).
⇒ a + ar + ar² = (39/10)
(ii)
Given that product of three numbers is 1.
⇒ a * ar * ar² = 1
⇒ (ar)³ = 1
⇒ ar = 1
⇒ a = (1/r)
Substitute a = (1/r) in (i), we get
⇒ (1/r) + (1/r) * r + (1/r) * r² = 39/10
⇒ 1/r + 1 + r = 39/10
⇒ 1 + r + r² = 39r/10
⇒ 10(1 + r + r²) = 39r
⇒ 10 + 10r + 10r² = 39r
⇒ 10 + 10r + 10r² - 39r = 0
⇒ 10r² - 29r + 10 = 0
⇒ 10r² - 25r - 4r + 10 = 0
⇒ 5r(2r - 5) -2(2r - 5) = 0
⇒ (5r - 2)(2r - 5) = 0
⇒ r = (2/5) (or) 5/2.
(iii)
When r = 2/5:
⇒ a = 5/2
When r = 5/2:
⇒ 2/5.
(iv)
When a = 5/2 and r = 2/5:
⇒ a = 5/2
⇒ ar = (5/2) * (2/5) = 1
⇒ ar² = (5/2) * (2/5)² = 2/5
When a = 2/5 and r = 5/2:
⇒ a = 2/5
⇒ ar = (2/5) * (5/2) = 1
⇒ ar² = (2/5) * (5/2)² = 5/2
Therefore, the numbers are 5/2, 1, 2/5 (or) 2/5, 1, 5/2.
Hope it helps!