Math, asked by pandaXop, 3 months ago

✬ HeY There ! ✬

➥ Solve the following equations.

1.} 4x² – 4ax + (a² – b²) = 0
2.} 9x² – 6b²x – (a⁴ – b⁴) = 0​

Answers

Answered by IdyllicAurora
102

Answer :-

\;\underbrace{\underline{\sf{Question's\;\;Analysis\;\;:-}}}

Here the concept of Quadratic Equations and Algebraic Identities has been. First we will split each and every equation in simplest term and then we will apply identities. After applying that, we will find the value of x. Since, this is a quadratic equation, we will get two values of x.

Let's do it !!

_______________________________________________

Solution :-

Given quadratic equations :-

1.] 4x² - 4ax + (a² - b²) = 0

2.] 9x² - 6b²x - (a - b) = 0

_______________________________________________

1.) 4x² - 4ax + (a² - b²) = 0

Using identity, a² - b² = (a + b)(a - b), we get

\\\;\sf{:\rightarrow\;\;\;4x^{2}\;-\;4ax\;+\;[(a\;+\;b)(a\;-\;b)]\;=\;\bf{0}}

\\\;\sf{:\rightarrow\;\;\;4x^{2}\;-\;2(a\;+\;b\;+\;a\;-\;b)x\;+\;[(a\;+\;b)(a\;-\;b)]\;=\;\bf{0}}

\\\;\sf{:\rightarrow\;\;\;4x^{2}\;-\;2(a\;+\;b\;+\;a\;-\;b)x\;+\;[(a\;+\;b)(a\;-\;b)]\;=\;\bf{0}}

On simplifying, this we get

\\\;\sf{:\rightarrow\;\;\;4x^{2}\;-\;2(a\;+\;b)x\;-\;2(a\;-\;b)x\;+\;[(a\;+\;b)(a\;-\;b)]\;=\;\bf{0}}

\\\;\sf{:\rightarrow\;\;\;4x^{2}\;-\;2(a\;+\;b)x\;-\;2(a\;-\;b)x\;+\;[(a\;+\;b)(a\;-\;b)]\;=\;\bf{0}}

Taking 2x as common term, we get,

\\\;\sf{:\rightarrow\;\;\;2x[2x\;-\;(a\;+\;b)]\;-\;(a\;-\;b)[2x\;-\;[(a\;+\;b)]\;=\;\bf{0}}

Now taking the common terms as together, we get,

\\\;\sf{:\rightarrow\;\;\;[2x\;-\;(a\;-\;b)]\:[2x\;-\;[(a\;+\;b)]\;=\;\bf{0}}

Here either,

[2x - (a - b)] = 0 , or

[2x - (a + b)] = 0.

Then,

✒ 2x - (a - b) = 0 or 2x - (a + b) = 0

✒ 2x - a + b = 0 or 2x - a - b = 0

✒ 2x = a - b or 2x = a + b

\\\;\quad\sf{:\mapsto\;\;x\;=\;\bf{\dfrac{(a\;-\;b)}{2}}\;\;\;\sf{or\;\;\;x\;=}\;\bf{\dfrac{(a\;+\;b)}{2}}}

So we got our answer.

\\\;\large{\underline{\rm{Thus,\;either\;the\;value\;of\;x\;is\;\;\boxed{\bf{\dfrac{(a\;+\;b)}{2}}}\;\rm{or}\;\;\boxed{\bf{\dfrac{(a\;-\;b)}{2}}}}}}

_______________________________________________

2.) 9x² - 6b²x - (a⁴ - b⁴) = 0

Using identity, a⁴ - b⁴ = (a² + b²)(a² - b²), we get,

\\\;\sf{:\rightarrow\;\;\;9x^{2}\;-\;[3(a^{2}\;+\;b^{2})\;+\;3(b^{2}\;-\;a^{2})]x\;+\;[(a^{2}\;+\;b^{2})(a^{2}\;-\;b^{2})]\;=\;\bf{0}}

\\\;\sf{:\rightarrow\;\;\;9x^{2}\;-3(a^{2}\;+\;b^{2})x\;+\;3(a^{2}\;-\;b^{2})x\;+\;(a^{2}\;+\;b^{2})(a^{2}\;-\;b^{2})\;=\;\bf{0}}

Now taking 3x as common term, we get,

\\\;\sf{:\rightarrow\;\;\;3x[3x\;-\;(a^{2}\;+\;b^{2})]\;+\;(a^{2}\;-\;b^{2})[3x\;-\;(a^{2}\;+\;b^{2})]\;=\;\bf{0}}

Now taking the common terms as single, we get,

\\\;\sf{:\rightarrow\;\;\;[3x\;+\;(a^{2}\;-\;b^{2})][3x\;-\;(a^{2}\;+\;b^{2})]\;=\;\bf{0}}

Here, either

[3x + (a² - b²)] = 0, or

[3x - (a² + b²)] = 0

Then,

✒ 3x + (a² - b²) = 0 or 3x - (a² + b²) = 0

✒ 3x + a² - b² = 0 or 3x - a² - b² = 0

✒ 3x = b² - a² or 3x = a² + b²

\\\;\quad\sf{:\mapsto\;\;x\;=\;\bf{\dfrac{(b^{2}\;-\;a^{2})}{3}}\;\;\;\sf{or\;\;\;x\;=}\;\bf{\dfrac{(a^{2}\;+\;b^{2})}{3}}}

So we got out answer.

\\\;\large{\underline{\rm{Thus,\;either\;the\;value\;of\;x\;is\;\;\boxed{\bf{\dfrac{(a^{2}\;+\;b^{2})}{3}}}\;\rm{or}\;\;\boxed{\bf{\dfrac{(b^{2}\;-\;a^{2})}{3}}}}}}

_______________________________________________

More Identities to know :-

\\\;\quad\sf{\leadsto\;\;\;(a\;+\;b)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;2ab}

\\\;\quad\sf{\leadsto\;\;\;(a\;-\;b)^{2}\;=\;a^{2}\;+\;b^{2}\;-\;2ab}

\\\;\quad\sf{\leadsto\;\;\;(a\;+\;b)^{2}\;-\;2ab\;=\;a^{2}\;+\;b^{2}}

\\\;\quad\sf{\leadsto\;\;\;(a\;+\;b\;+\;c)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;c^{2}\;+\;2ab\;+\;2bc\;+\;2ac}

\\\;\quad\sf{\leadsto\;\;\;(a\;+\;b)^{3}\;=\;a^{3}\;+\;b^{3}\;+\;3ab(a\;+\;b)}

\\\;\quad\sf{\leadsto\;\;\;(a\;+\;b)[a^{2}\;-\;ab\;+\;b^{2}]\;=\;a^{3}\;+\;b^{3}}

\\\;\quad\sf{\leadsto\;\;\;(a\;-\;b)[a^{2}\;+\;ab\;+\;b^{2}]\;=\;a^{3}\;-\;b^{3}}

\\\;\quad\sf{\leadsto\;\;\;(x\;+\;a)(x\;+\;b)\;=\;x^{2}\;+\;(a\;+\;b)x\;+\;ab}

\\\;\quad\sf{\leadsto\;\;\;(a\;-\;b)^{3}\;=\;a^{3}\;-\;b^{3}\;-\;3ab(a\;-\;b)}


pandaXop: Thanks: ☃️
MяƖиνιѕιвʟє: Osmm
Answered by BrainlyHero420
69

Answer:

4x² - 4ax + ( - ) = 0

⇒ 4x² - 2(a + b) x - 2(a - b) x + (a + b)(a - b) = 0

⇒ 2x{2x - (a + b)} - (a + b) {2x - (a + b)} = 0

⇒ {2x - (a + b)} {2x - (a - b)} = 0

⇒ 2x - (a + b) = 0 ; 2x - (a - b) = 0

⇒ 2x = (a + b) ; 2x = (a - b)

⇒ x = \sf\dfrac{(a + b)}{2} ; x = \sf\dfrac{(a - b)}{2}

x = \sf\dfrac{(a + b)}{2} , \sf\dfrac{(a - b)}{2}

9x² - 6b²x - (a⁴ - b⁴) = 0

⇒ 9x² - 3(2b²)x - (a⁴ - b⁴) = 0

⇒ 9x² - 3(b² - a² + b² + a²)x + (b⁴ - a⁴) = 0

⇒9x²- 3(b² - a²)x - 3(b² + a²)x + (b² + a²)(b² - a²)= 0

⇒ 3x(3x - b² + a²) - (b² + a²) (3x - b² + a²) = 0

⇒ (3x - b² - a²) (3x - b² + a²) = 0

⇒ 3x - b² - a² = 0 ; 3x - b² + a² = 0

⇒ 3x = a² + b² ; 3x = b² - a²

⇒ x = \sf\dfrac{{a}^{2} + {b}^{2}}{3} ; x = \sf\dfrac{{b}^{2} - {a}^{2}}{3}

x = \sf\dfrac{{a}^{2} + {b}^{2}}{3} , \sf\dfrac{{b}^{2} -{a}^{2}}{3}


pandaXop: Thanks : ☃️
MяƖиνιѕιвʟє: Osmm
Similar questions