Heya !! ❤️
Appy Holi ! ^_^
Question :-
If , cos(β - γ ) + cos( γ - α ) + cos ( α - β ) = - 3 / 2
Then prove that ,
cosα + cosβ + cosγ = 0
and , sinα + sinβ + sinγ = 0
And then prove that ,
cos ( β - γ ) = cos ( γ - α ) = cos ( α - β ) = - 1 / 2
Thanks!
wardahd1234:
ok
Answers
Answered by
52
Answered by
3
Proof :
\underline{\textsf{1st part :}}1st part :
\mathsf{Given,\:cos(\beta-\gamma)+cos(\gamma-\alpha)+cos(\alpha-\beta)=-\frac{3}{2}}Given,cos(β−γ)+cos(γ−α)+cos(α−β)=−23
\to \mathsf{2cos(\beta-\alpha)+2cos(\gamma-\alpha)+2cos(\alpha-\beta)+3=0}→2cos(β−α)+2cos(γ−α)+2cos(α−β)+3=0
\to \mathsf{2(cos\beta\:cos\gamma+sin\beta\:sin\gamma)}→2(cosβcosγ+sinβsinγ)
\mathsf{+2(cos\gamma\:cos\alpha+sin\gamma\:sin\alpha)}+2(cosγcosα+sinγsinα)
\mathsf{+2(cos\alpha\:cos\beta+sin\alpha\:sin\beta)}+2(cosαcosβ+sinαsinβ)
\mathsf{+1+1+1=0}+1+1+1=0
\to \mathsf{2cos\beta\:cos\gamma+2sin\beta\:sin\gamma}→2cosβcosγ+2sinβsinγ
\mathsf{+2cos\gamma\:cos\alpha+2sin\gamma\:sin\alpha}+2cosγcosα+2sinγsinα
\mathsf{+2cos\alpha\:cos\beta+2sin\alpha\:sin\beta}+2cosαcosβ+2sinαsinβ
\mathsf{+sin^{2}\alpha+cos^{2}\alpha+\sin^{2}\beta+cos^{2}\beta}+sin2α+cos2α+sin2β+cos2β
\mathsf{+sin^{2}\gamma+cos^{2}\gamma=0}+sin2γ+cos2γ=0
\to \mathsf{cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma}→cos2α+cos2β+cos2γ
\small{\mathsf{+2\:cos\alpha\:cos\beta+2\:cos\beta\:cos\gamma+2\:cos\gamma\:cos\alpha}}+2cosαcosβ+2cosβcosγ+2cosγcosα
\mathsf{+sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma}+sin2α+sin2β+sin2γ
\mathsf{+2\:sin\alpha\:sin\beta+2\:sin\beta\:sin\gamma+2\:sin\gamma\:sin\alpha=0}+2sinαsinβ+2sinβsinγ+2sinγsinα=0
\to \mathsf{(cos\alpha+cos\beta+cos\gamma)^{2}}→(cosα+cosβ+cosγ)2
\mathsf{+(sin\alpha+sin\beta+sin\gamma)^{2}=0}+(sinα+sinβ+sinγ)2=0
\textsf{We know that if sum of two square}We know that if sum of two square
\textsf{terms be zero, then each of the}terms be zero, then each of the
\textsf{terms be zero.}terms be zero.
\textsf{Then,}\:\boxed{\mathsf{cos\alpha+cos\beta+cos\gamma=0}}Then,cosα+cosβ+cosγ=0
\textsf{and}\:\boxed{\mathsf{sin\alpha+sin\beta+sin\gamma=0}}andsinα+sinβ+sinγ=0
\textsf{Hence, proved.}Hence, proved.
\underline{\textsf{1st part :}}1st part :
\mathsf{Given,\:cos(\beta-\gamma)+cos(\gamma-\alpha)+cos(\alpha-\beta)=-\frac{3}{2}}Given,cos(β−γ)+cos(γ−α)+cos(α−β)=−23
\to \mathsf{2cos(\beta-\alpha)+2cos(\gamma-\alpha)+2cos(\alpha-\beta)+3=0}→2cos(β−α)+2cos(γ−α)+2cos(α−β)+3=0
\to \mathsf{2(cos\beta\:cos\gamma+sin\beta\:sin\gamma)}→2(cosβcosγ+sinβsinγ)
\mathsf{+2(cos\gamma\:cos\alpha+sin\gamma\:sin\alpha)}+2(cosγcosα+sinγsinα)
\mathsf{+2(cos\alpha\:cos\beta+sin\alpha\:sin\beta)}+2(cosαcosβ+sinαsinβ)
\mathsf{+1+1+1=0}+1+1+1=0
\to \mathsf{2cos\beta\:cos\gamma+2sin\beta\:sin\gamma}→2cosβcosγ+2sinβsinγ
\mathsf{+2cos\gamma\:cos\alpha+2sin\gamma\:sin\alpha}+2cosγcosα+2sinγsinα
\mathsf{+2cos\alpha\:cos\beta+2sin\alpha\:sin\beta}+2cosαcosβ+2sinαsinβ
\mathsf{+sin^{2}\alpha+cos^{2}\alpha+\sin^{2}\beta+cos^{2}\beta}+sin2α+cos2α+sin2β+cos2β
\mathsf{+sin^{2}\gamma+cos^{2}\gamma=0}+sin2γ+cos2γ=0
\to \mathsf{cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma}→cos2α+cos2β+cos2γ
\small{\mathsf{+2\:cos\alpha\:cos\beta+2\:cos\beta\:cos\gamma+2\:cos\gamma\:cos\alpha}}+2cosαcosβ+2cosβcosγ+2cosγcosα
\mathsf{+sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma}+sin2α+sin2β+sin2γ
\mathsf{+2\:sin\alpha\:sin\beta+2\:sin\beta\:sin\gamma+2\:sin\gamma\:sin\alpha=0}+2sinαsinβ+2sinβsinγ+2sinγsinα=0
\to \mathsf{(cos\alpha+cos\beta+cos\gamma)^{2}}→(cosα+cosβ+cosγ)2
\mathsf{+(sin\alpha+sin\beta+sin\gamma)^{2}=0}+(sinα+sinβ+sinγ)2=0
\textsf{We know that if sum of two square}We know that if sum of two square
\textsf{terms be zero, then each of the}terms be zero, then each of the
\textsf{terms be zero.}terms be zero.
\textsf{Then,}\:\boxed{\mathsf{cos\alpha+cos\beta+cos\gamma=0}}Then,cosα+cosβ+cosγ=0
\textsf{and}\:\boxed{\mathsf{sin\alpha+sin\beta+sin\gamma=0}}andsinα+sinβ+sinγ=0
\textsf{Hence, proved.}Hence, proved.
Similar questions