Math, asked by Ashishkumar098, 11 months ago

Heya !! ❤️

Appy Holi ! ^_^

Question :-


If , cos(β - γ ) + cos( γ - α ) + cos ( α - β ) = - 3 / 2

Then prove that ,

cosα + cosβ + cosγ = 0

and , sinα + sinβ + sinγ = 0

And then prove that ,

cos ( β - γ ) = cos ( γ - α ) = cos ( α - β ) = - 1 / 2


Thanks!​


wardahd1234: ok

Answers

Answered by Swarup1998
52
\underline{\underline{\textsf{Proof :}}}

\underline{\textsf{1st part :}}

\mathsf{Given,\:cos(\beta-\gamma)+cos(\gamma-\alpha)+cos(\alpha-\beta)=-\frac{3}{2}}

\to \mathsf{2cos(\beta-\alpha)+2cos(\gamma-\alpha)+2cos(\alpha-\beta)+3=0}

\to \mathsf{2(cos\beta\:cos\gamma+sin\beta\:sin\gamma)}

\mathsf{+2(cos\gamma\:cos\alpha+sin\gamma\:sin\alpha)}

\mathsf{+2(cos\alpha\:cos\beta+sin\alpha\:sin\beta)}

\mathsf{+1+1+1=0}

\to \mathsf{2cos\beta\:cos\gamma+2sin\beta\:sin\gamma}

\mathsf{+2cos\gamma\:cos\alpha+2sin\gamma\:sin\alpha}

\mathsf{+2cos\alpha\:cos\beta+2sin\alpha\:sin\beta}

\mathsf{+sin^{2}\alpha+cos^{2}\alpha+\sin^{2}\beta+cos^{2}\beta}

\mathsf{+sin^{2}\gamma+cos^{2}\gamma=0}

\to \mathsf{cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma}

\small{\mathsf{+2\:cos\alpha\:cos\beta+2\:cos\beta\:cos\gamma+2\:cos\gamma\:cos\alpha}}

\mathsf{+sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma}

\mathsf{+2\:sin\alpha\:sin\beta+2\:sin\beta\:sin\gamma+2\:sin\gamma\:sin\alpha=0}

\to \mathsf{(cos\alpha+cos\beta+cos\gamma)^{2}}

\mathsf{+(sin\alpha+sin\beta+sin\gamma)^{2}=0}

\textsf{We know that if sum of two square}

\textsf{terms be zero, then each of the}

\textsf{terms be zero.}

\textsf{Then,}\:\boxed{\mathsf{cos\alpha+cos\beta+cos\gamma=0}}

\textsf{and}\:\boxed{\mathsf{sin\alpha+sin\beta+sin\gamma=0}}

\textsf{Hence, proved.}

\underline{\textsf{2nd part :}}

\mathsf{Now,\:cos(\beta-\gamma)+cos(\gamma-\alpha)}

\mathsf{=cos\beta\:cos\gamma+sin\beta\:sin\gamma}

\mathsf{+cos\gamma\:cos\alpha+sin\gamma\:sin\alpha}

\mathsf{=cos\beta\:cos\gamma+cos\gamma\:cos\alpha}

\mathsf{+sin\beta\:sin\gamma+sin\gamma\:sin\alpha}

\mathsf{=cos\gamma(cos\beta+cos\alpha)+sin\gamma(sin\beta+sin\alpha)}

\mathsf{=cos\gamma(-cos\gamma)+sin\gamma(-sin\gamma)}

[\textsf{by proofs in 1st part}]

\mathsf{=-(cos^{2}\gamma+sin^{2}\gamma)}

\mathsf{=-1}

\to \mathsf{cos(\beta-\gamma)+cos(\gamma-\alpha)=-1\:...(i)}

\textsf{Similarly, we can get}

\mathsf{cos(\beta-\gamma)+cos(\alpha-\beta)=-1\:...(ii)}

\textsf{(i) - (ii) gives}

\mathsf{cos(\gamma-\alpha)-cos(\alpha-\beta)=0}

\to \mathsf{cos (\gamma-\alpha)=cos(\alpha-\beta)\:...(A)}

\mathsf{Also,\:cos(\alpha-\beta)+cos(\beta-\gamma)=-1\:...(iii)}

\textsf{Proceeding with previous calculations, we get}

\mathsf{cos(\beta-\gamma)=cos(\gamma-\alpha)\:...(B)}

\textsf{Using (A) and (B), we get}

\mathsf{cos(\beta-\gamma)=cos(\gamma-\alpha)=cos(\alpha-\beta)\:...(C)}

\textsf{Using (C), from (i), we get}

\mathsf{2\:cos(\beta-\gamma)=-1}

\to \mathsf{cos(\beta-\gamma)=-\frac{1}{2}}

\therefore \textsf{From (C), we get}

\boxed{\mathsf{cos(\beta-\gamma)=cos(\gamma-\alpha)=cos(\alpha-\beta)=-\frac{1}{2}}}

\textsf{Hence, proved.}

Swarup1998: Question is solved. Give me some time to edit the codes. :)
Ashishkumar098: Ok bhaiya , i have no harry , anyways thanks a lot for solving the problem and help me :p
Swarup1998: Bhai, ho gaya! ☺
Ashishkumar098: ohhh thanks bhaiya :p , but this problem is little hard ×_×
Swarup1998: Did you get 1st part well?
Ashishkumar098: yeah got that ( 1st part ) :p
Answered by SwarupBhaiya
3
Proof :​​ 

\underline{\textsf{1st part :}}1st part :​ 

\mathsf{Given,\:cos(\beta-\gamma)+cos(\gamma-\alpha)+cos(\alpha-\beta)=-\frac{3}{2}}Given,cos(β−γ)+cos(γ−α)+cos(α−β)=−23​

\to \mathsf{2cos(\beta-\alpha)+2cos(\gamma-\alpha)+2cos(\alpha-\beta)+3=0}→2cos(β−α)+2cos(γ−α)+2cos(α−β)+3=0

\to \mathsf{2(cos\beta\:cos\gamma+sin\beta\:sin\gamma)}→2(cosβcosγ+sinβsinγ) 

\mathsf{+2(cos\gamma\:cos\alpha+sin\gamma\:sin\alpha)}+2(cosγcosα+sinγsinα) 

\mathsf{+2(cos\alpha\:cos\beta+sin\alpha\:sin\beta)}+2(cosαcosβ+sinαsinβ) 

\mathsf{+1+1+1=0}+1+1+1=0 

\to \mathsf{2cos\beta\:cos\gamma+2sin\beta\:sin\gamma}→2cosβcosγ+2sinβsinγ 

\mathsf{+2cos\gamma\:cos\alpha+2sin\gamma\:sin\alpha}+2cosγcosα+2sinγsinα 

\mathsf{+2cos\alpha\:cos\beta+2sin\alpha\:sin\beta}+2cosαcosβ+2sinαsinβ 

\mathsf{+sin^{2}\alpha+cos^{2}\alpha+\sin^{2}\beta+cos^{2}\beta}+sin2α+cos2α+sin2β+cos2β 

\mathsf{+sin^{2}\gamma+cos^{2}\gamma=0}+sin2γ+cos2γ=0 

\to \mathsf{cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma}→cos2α+cos2β+cos2γ 

\small{\mathsf{+2\:cos\alpha\:cos\beta+2\:cos\beta\:cos\gamma+2\:cos\gamma\:cos\alpha}}+2cosαcosβ+2cosβcosγ+2cosγcosα

\mathsf{+sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma}+sin2α+sin2β+sin2γ 

\mathsf{+2\:sin\alpha\:sin\beta+2\:sin\beta\:sin\gamma+2\:sin\gamma\:sin\alpha=0}+2sinαsinβ+2sinβsinγ+2sinγsinα=0

\to \mathsf{(cos\alpha+cos\beta+cos\gamma)^{2}}→(cosα+cosβ+cosγ)2 

\mathsf{+(sin\alpha+sin\beta+sin\gamma)^{2}=0}+(sinα+sinβ+sinγ)2=0 

\textsf{We know that if sum of two square}We know that if sum of two square 

\textsf{terms be zero, then each of the}terms be zero, then each of the 

\textsf{terms be zero.}terms be zero. 

\textsf{Then,}\:\boxed{\mathsf{cos\alpha+cos\beta+cos\gamma=0}}Then,cosα+cosβ+cosγ=0​ 

\textsf{and}\:\boxed{\mathsf{sin\alpha+sin\beta+sin\gamma=0}}andsinα+sinβ+sinγ=0​ 

\textsf{Hence, proved.}Hence, proved. 

Similar questions