Math, asked by sriharinidhanapriya, 1 year ago

HEYA HERE IS YOUR QUESTION,

solve this by using quadratic formula.

Attachments:

Answers

Answered by siddhartharao77
9
Given Equation is abx^2 + (b^2 - ac)x - bc = 0

On comparing with ax^2 + bx + c = 0,  we get

a = ab, b = b^2 - ac, c = -bc.

The solutions are:

= \ \textgreater \  x =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a}

= \ \textgreater \   \frac{-(b^2 - ac) +  \sqrt{(b^2 - ac)^2 - 4(ab)(-bc)} }{2(ab)}

= \ \textgreater \   \frac{-(b^2 - ac)+  \sqrt{b^4 + a^2c^2 - 2b^2ac + 4b^2ac }  }{2ab}

= \ \textgreater \   \frac{-(b^2 - ac) +  \sqrt{b^4 + a^2c^2 + 2b^2ac} }{2ab}

= \ \textgreater \   \frac{-(b^2 - ac) +  \sqrt{(b^2 + ac)^2} }{2ab}

= \ \textgreater \   \frac{-(b^2 - ac) + b^2 + ac}{2ab}

= \ \textgreater \   \frac{-b^2 + ac + b^2 + ac }{2ab}

= \ \textgreater \   \frac{2ac}{2ab}

= \ \textgreater \   \frac{c}{b}


(2) 

= \ \textgreater \  x =  \frac{-b -  \sqrt{b^2 - 4ac} }{2a}

= \ \textgreater \   \frac{-(b^2 - ac) -  \sqrt{(b^2 - ac)^2 + 4ab * bc} }{2ab}

= \ \textgreater \   \frac{- (b^2 - ac) -  \sqrt{b^4 + a^2c^2 - 2b^2ac + 4b^2ac} }{2ab}

= \ \textgreater \   \frac{-(b^2 - ac) -  \sqrt{b^4 + a^2c^2 + 2b^2ac} }{2ab}

= \ \textgreater \   \frac{-(b^2 - ac) -  \sqrt{(b^2 + ac)^2} }{2ab}

= \ \textgreater \   \frac{-(b^2 - ac) - b^2 + ac}{2ab}

= \ \textgreater \   \frac{-b^2 + ac - b^2 + ac }{2ab}

= \ \textgreater \   \frac{-2b^2}{2ab}

= \ \textgreater \   \frac{-b}{a}



Hope this helps!

siddhartharao77: :-)
Answered by Anonymous
7
Hi,

Please see the attached file !



Thanks
Attachments:
Similar questions