Math, asked by Anonymous, 1 year ago


Heya mates!!

❤️❤️❤️❤️❤️❤️

If 5 tan theta = 4, find the value of 2sin theta - 3cos theta/4sin theta - 9cos theta


ASAP!!

Thank you ❣️❣️​

Answers

Answered by Anonymous
0

Given

→ 5 tan∅ = 4

→ tan∅ = 4/5

Solution

→ (2 sin∅ - 3 cos∅)/(4 sin∅ - 9 cos∅)

Dividing whole equation by cos∅. [Why? Because sin∅/cos∅ = tan∅]

→ (2 sin∅ - 3 cos∅)/cos∅/(4 sin∅ - 9 cos∅)/cos∅

→ (2 sin∅ - 3 cos∅)/cos∅/(4 sin∅ - 9 cos∅)/cos∅

→ (2 sin∅/cos∅ - 3 cos∅/cos∅)/(4 sin∅/cos∅ - 9 cos∅/cos∅)

→ (2 tan∅ - 3)/(4 tan∅ - 9)

→ (2 × 4/5 - 3)/(4 × 4/5 - 9)

→ (8/5 - 15/5)/(16/5 - 45/5)

→ (- 7/5)/(- 29/5)

→ 7/29

Hence the answer is 7/29.

Answered by hellod
0

Given

→ 5 tan∅ = 4

→ tan∅ = 4/5

Solution

→ (2 sin∅ - 3 cos∅)/(4 sin∅ - 9 cos∅)

Dividing whole equation by cos∅. [Why? Because sin∅/cos∅ = tan∅]

→ (2 sin∅ - 3 cos∅)/cos∅/(4 sin∅ - 9 cos∅)/cos∅

→ (2 sin∅ - 3 cos∅)/cos∅/(4 sin∅ - 9 cos∅)/cos∅

→ (2 sin∅/cos∅ - 3 cos∅/cos∅)/(4 sin∅/cos∅ - 9 cos∅/cos∅)

→ (2 tan∅ - 3)/(4 tan∅ - 9)

→ (2 × 4/5 - 3)/(4 × 4/5 - 9)

→ (8/5 - 15/5)/(16/5 - 45/5)

→ (- 7/5)/(- 29/5)

→ 7/29

Hence the answer is 7/29.

Similar questions