Math, asked by kanikamalhans, 1 year ago

Heya plzz explain well ! will be marked brainliest!

Attachments:

sivaprasath: answer is 2, right ?
sivaprasath: 10/3 *
kanikamalhans: yep 10/3

Answers

Answered by sivaprasath
1
Solution :

_____________________________________________________________

Given :

To find the value of :

 \frac{2^{2001} + 2^{1999}}{2^{2000} - 2^{1998}}

_____________________________________________________________

 \frac{2^{2001} + 2^{1999}}{2^{2000} - 2^{1998}}

 \frac{2^{2 + 1999} - 2^{1999}}{2^{2 + 1998} - 2^{1998}}

 \frac{ 2^{1999}*2^{2} + 2^{1999}}{ 2^{1998}*2^2  - 2^{1998}}

 \frac{2^{1999}(2^2 + 1)}{2^{1998}(2^2 - 1)}

 \frac{2^{1998 + 1}(4 + 1)}{2^{1998}(4 - 1)}

 \frac{2*2^{1998}( 5 )}{2^{1998}(3)}

 \frac{2*(5)}{3}

 \frac{10}{3}

_____________________________________________________________

                                            Hope it Helps !!

⇒ Mark as Brainliest,.


kanikamalhans: thnjss
sivaprasath: Thanks for marking Brainliest,.
kanikamalhans: wlcm
Answered by nitthesh7
1
Nice question mate!!!✌✌✌

Ur answer goes like this.....

》2^2001 + 2^1998/2^2000 - 2^1998

》2^1998(2^3+2^1)/2^1998(2^2-2^1)

Cancelling 2^1998

》8+2/4-2

》 10/3


Hope this Helps

If u find it as most helpful pls mark it as brainliest ....


kanikamalhans: thnks!
nitthesh7: No mention
Similar questions