Math, asked by Satyamrajput, 1 year ago

Heya♥️♥️♥️♥️♥️♥️♥️

Solve this integration

Don't spam

Thanks✌️✌️

Attachments:

RabbitPanda: Can i...
kevinujunioroy492d: what

Answers

Answered by kevinujunioroy492d
22
HEY BUDDY

..............................................................................

HERE IS YOUR SOLUTION

______________________________

COMMENT BELOW⬇⬇⬇⬇ FOR DOUBTS

THANKS
Attachments:

kevinujunioroy492d: thanks
Answered by rohitkumargupta
30
HELLO DEAR,

\bold{⇒\int{\frac{(x^2 + 1)(x^2 + 2)}{(x^2 + 3)(x^2 + 4)}}\,dx}

\bold{⇒\int{\frac{[(x^2 + 3) - 2][(x^2 + 4) - 2]}{(x^2 + 3)(x^4)}}\,dx}

\bold{⇒\int{\frac{(x^2 +3)(x^2+4) - 2(x^2+3) - 2(x^2+4) + 4}{(x^2 + 3)(x^2+4)}}\,dx}

\bold{⇒\int{[1 - \frac{2(x^2+3)}{(x^2+3)(x^2+4)} - \frac{2(x^2+4)}{(x^2+3)(x^2+4)} + \frac{4}{(x^2+3)(x^2+4)}]}\,dx}

\bold{⇒\int{[1 - \frac{2}{x^2+4} - \frac{2}{x^2+4} + \frac{4}{(x^2+3)(x^2+4)}]}\,dx}

\bold{⇒\int{[1 - \frac{2}{x^2+4} - \frac{2}{x^2+3} + 4\frac{(x^2 + 4) - (x^2 + 3)}{(x^2+ 3)(x^2+4)}]}\,dx}

\bold{⇒\int{[1 - 2\frac{1}{x^2 + 2^2} - 2\frac{1}{x^2 + (\sqrt{3})^2} + 4\frac{1}{x^2 + 3} - 4\frac{1}{x^2+4}]}\,dx}

\bold{⇒\int{[1 - 6\frac{1}{x^2 + 2^2} + 2\frac{1}{x^2 + (\sqrt{3})^2}]}\,dx}

\bold{⇒\int{1}\,dx - 6\int{\frac{1}{(x^2 + 2^2)}}\,dx + 2\int{\frac{1}{x^2 + (\sqrt{3})^2}}\,dx}

\bold{⇒x - \frac{6}{2}tan^{-1}\frac{x}{2} + \frac{2}{\sqrt{3}}tan^{-1}\frac{x}{\sqrt{3}} + c}

I HOPE ITS HELP YOU DEAR,
THANKS

rohitkumargupta: thanks:-)
rohitkumargupta: @naira and @satyam
Similar questions