heyaa....
❤only maths geniues❤
step by step explanation
don't copy❌
#Dramaqueen⭐
Attachments:
Answers
Answered by
8
A (-1,2 )=x1 , y1
B (3,2)=x2 , y2
By distance formula
AB =√(x2-x1) square+( y2-y1)square
=√(3- (-2)) square + ( 2-2 ) square
=√ ( 3 + 2 ) square + (0) square
=√ (5) square + 0
=√ 5×5 + 0
=√ 25 +0
=√ 25
AB = 5
if like this answer mark me as branilist or give heart mark or follow me
B (3,2)=x2 , y2
By distance formula
AB =√(x2-x1) square+( y2-y1)square
=√(3- (-2)) square + ( 2-2 ) square
=√ ( 3 + 2 ) square + (0) square
=√ (5) square + 0
=√ 5×5 + 0
=√ 25 +0
=√ 25
AB = 5
if like this answer mark me as branilist or give heart mark or follow me
Answered by
8
Answer:
(1,0) and (1,4)
Step-by-step explanation:
Let A(-1,2) and C(3,2) be the two opposite vertices and vertex B be (x,y).
Since ABCD is a square, AB = BC.
⇒ AB² = BC²
⇒ (x + 1)² + (y - 2)² = (x - 3)² + (y - 2)²
⇒ x² + 1 + 2x + y² + 4 - 4x = x² + 9 - 6x + y² + 4 - 4x
⇒ x² + 2x + y² - 4x - x² + 6x - y² + 4x = 8
⇒ 8x = 8
⇒ x = 1.
As ABCD is a square, ∠B = 90°.
⇒ AB² + BC² = AC²
⇒ (x + 1)² + (y - 2)² + (x - 3)² + (y - 2)² = (3 + 1)² + (2 - 2)²
⇒ x² + 1 + 2x + y² + 4 - 4y + x² + 9 - 6x + y² + 4 - 4y = 16
⇒ 2x² - 4x + 10 + 2y² - 8y + 8 = 16
⇒ 2(1)² - 4(1) + 10 + 2y² - 8y + 8 = 16
⇒ 2 - 4 + 10 + 2y² - 8y + 8 = 16
⇒ 2y² - 8y = 0
⇒ y² - 4y = 0
⇒ y(y - 4) = 0
⇒ y = 0,4.
Therefore, the other two vertices of square are (1,0) and (1,4).
Hope it helps!
Attachments:
aastha4865:
superb solution....it helps me a lot
Similar questions