heyaaa,,,
please Solve this question.....
If a line theta + b cos theta = c, then prove that a cos theta - b sin theta = A square + B square - C square. under root.
Bhanumaster:
i didnt understand
Answers
Answered by
2
hey see the above pic
thanq
thanq
Attachments:
Answered by
1
let
[tex]cos(t) = \frac{a}{ \sqrt{a^2+b^2} } [/tex]
then
so
now
[tex]a cos(x) - bsin(x) = \sqrt{a^2+b^2}(cos(t)cos(x)-sin(t)sin(x)) = \\ \sqrt{a^2+b^2} (cos(t+x)) = \sqrt{a^2+b^2} \frac{( \sqrt{a^2+b^2-c^2} )}{ \sqrt{a^2+b^2}} = \sqrt{a^2+b^2-c^2} [/tex]
Similar questions
Math,
7 months ago
Math,
7 months ago
Social Sciences,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago