Math, asked by Purvanshisaroha18, 11 months ago

heyy dear friends plz ans all the Que. in the pic.​

Attachments:

Answers

Answered by Anonymous
11

Solution 6 :

Given :

  • Age of Hari and Harry are in ratio 5:7.
  • Four years from now, the ratio of the ages will be 3:4.

To Find :

  • Present age of Hari
  • Present age of Harry

Solution :

Let x be the common value of the ratio 5:7.

•°• Hari's age = 5x

Harry's age = 7x

Case 1 :

Four years later from now, the ratio of the age will become 3:4.

Age of Hari after 4 years, (5x+4) years.

Age of Harry after 4 years, (7x+4) years.

Equation :

\longrightarrow \sf{\dfrac{5x+4}{7x+4}\:=\:\dfrac{3}{4}}

\longrightarrow \sf{4(5x+4)=3(7x+4)}

\longrightarrow \sf{20x+16=21x+12}

\longrightarrow \sf{20x-21x=12-16}

\longrightarrow \sf{-x=-4}

\longrightarrow \sf{x=4}

Substitute, x = 4 in the age value of Hari and Harry.

\large{\boxed{\bold{Present\:age\:of\:Hari\:=\:5x\:=\:5(4)\:=\:20\:years}}}

\large{\boxed{\bold{Present\:age\:of\:Harry\:=\:7(4)\:=\:28\:years}}}

Solution 7:

Given :

  • The denominator of a rational number is greater than numerator by 8.
  • If, numerator is increased by 17 and denominator is decreased by 1, the number obtained is 3/2.

To Find :

  • The Rational Number.

Solution :

Let the numerator be x.

Let the denominator be y.

Rational Number = \sf{\dfrac{x}{y}}

Case 1 :

The denominator is greater than numerator by 8.

Equation :

\sf{y=x+8\:\:\:(1)}

Case 2 :

The numerator when increased by 17 and the denominator when decreased by 1, the number becomes 3/2.

Numerator = (x+17)

Denominator = (y-1)

Equation :

\longrightarrow \sf{\dfrac{x+17}{y-1}\:=\:\dfrac{3}{2}}

\longrightarrow \sf{2(x+17)=3(y-1)}

\longrightarrow \sf{2x+34=3y-3}

\longrightarrow \sf{2x-3y=-3-34}

\longrightarrow \sf{2x-3y=-37}

\longrightarrow \sf{2x-3(x+8)=-37}

\longrightarrow \sf{2x-3x-24=-37}

\longrightarrow \sf{-x=-37+24}

\longrightarrow \sf{-x=-13}

\longrightarrow \sf{x=13}

Substitute, x = 13 in equation (1),

\longrightarrow \sf{y=x+8}

\longrightarrow \sf{y=13+8}

\longrightarrow \sf{y=21}

\large{\boxed{\bold{Numerator\:=\:x\:=\:13}}}

\large{\boxed{\bold{Denominator\:=\:y\:=\:21}}}

\large{\boxed{\bold{Rational\:Number\:=\:\dfrac{x}{y}\:=\:\dfrac{13}{21}}}}

Solution 1 :

Given :

  • \sf{\dfrac{8x-3}{3x}\:=\:2}

To Find :

  • Value of x

Solution :

\longrightarrow \sf{\dfrac{8x-3}{3x}\:=\:2}

\longrightarrow \sf{8x-3=3x(2)}

\longrightarrow \sf{8x-3=6x}

\longrightarrow \sf{8x-6x=3}

\longrightarrow \sf{2x=3}

\longrightarrow \sf{x=\dfrac{3}{2}}

\large{\boxed{\bold{Value\:of\:x\:=\:\dfrac{3}{2}}}}

Solution 2 :

Given :

  • \sf{\dfrac{9x}{7-6x}\:=\:15}

To Find :

  • Value of x.

Solution :

\longrightarrow \sf{\dfrac{9x}{7-6x}\:=\:15}

\longrightarrow \sf{15(7-6x) =9x}

\longrightarrow \sf{105-90x=9x}

\longrightarrow \sf{105=9x+90x}

\longrightarrow \sf{105=99x}

\longrightarrow \sf{\dfrac{105}{99}=x}

\large{\boxed{\bold{Value\:of\:x\:=\:\dfrac{105}{99}}}}

Solution 3 :

Given :

  • \sf{\dfrac{z}{z+15}\:=\:\dfrac{4}{9}}

To Find :

  • Value of z.

Solution :

\longrightarrow \sf{\dfrac{z}{z+15}\:=\:\dfrac{4}{9}}

\longrightarrow \sf{9z=4(z+15)}

\longrightarrow \sf{9z=4z+60}

\longrightarrow \sf{9z-4z=60}

\longrightarrow \sf{5z=60}

\longrightarrow \sf{z=\dfrac{60}{5}}

\longrightarrow \sf{z=12}

\large{\boxed{\bold{Value\:of\:z\:=\:12}}}

Solution 4 :

Given :

  • \sf{\dfrac{3y+4}{2-6y}\:=\:\dfrac{-2}{5}}

To Find :

  • Value of y.

Solution :

\longrightarrow \sf{\dfrac{3y+4}{2-6y}\:=\:\dfrac{-2}{5}}

\longrightarrow \sf{5(3y+4)=-2(2-6y) }

\longrightarrow \sf{15y+20=-4+12y}

\longrightarrow \sf{15y-12y=-4-20}

\longrightarrow \sf{3y=-24}

\longrightarrow \sf{y=\dfrac{-24}{3}}

\longrightarrow \sf{y=-8}

Solution 5 :

Given :

  • \sf{\dfrac{7y+4}{y+2}\:=\:\dfrac{-4}{3}}

To Find :

  • Value of y.

Solution :

\longrightarrow \sf{\dfrac{7y+4}{y+2}\:=\:\dfrac{-4}{3}}

\longrightarrow \sf{3(7y+4)=-4(y+2)}

\longrightarrow \sf{21y+12=-4y-8}

\longrightarrow \sf{21y+4y=-8-12}

\longrightarrow \sf{25y=-20}

\longrightarrow \sf{y=\dfrac{-20}{25}}

\longrightarrow \sf{y=\dfrac{-4}{5}}

Answered by za6715
10

Answer:

Here is your answer dear. Please mark brainliest.

Thanks

.

Attachments:
Similar questions