Chemistry, asked by niharikaramayanam, 9 months ago

heyy guys plz help...
i didn't understand that how 12400 came... can anyone plz explain this process ☹️​

Attachments:

Answers

Answered by Atαrαh
3

Given :

  • work function = 2 e V
  • wavelength = 4000 A °

Solution:

we know that ,

 \implies{E =  \frac{hc}{ \lambda}}

here ,

 \implies{h = 6.63 \times  {10}^{ - 34}  \frac{J}{s} }

to convert it into eV / s ,

 \implies{h =  \frac{6.6 \times  {10}^{ - 34} }{1.6 \times  {10}^{ - 19} } }

 \implies{h = 4.14 \times  {10}^{ - 15}  \frac{eV}{m} }

Now multiplying h by c we get ,

 \implies{hc = 4.14 \times  {10}^{ - 15}  \times 3 \times  {10}^{8} }

 \implies{hc = 12.42 \times  {10}^{ - 7} }

 \boxed{hc = 12420 \times  {10}^{ - 10} }

Substituting the value of hc in E we get

 \implies{E =  \frac{12400 \times  {10}^{ - 10} }{ 4000 \times  {10}^{ - 10} } }

 \boxed{E =3.1eV}

we know that ,

 \implies{KE = E  - W}

 \implies{KE = 3.1 - 2}

 \implies{KE = 1.1 e V}

 \implies{KE = 1.1 \times 1.6 \times  {10}^{ - 19} J}

 \boxed{KE = 1.76 \times  {10}^{ - 19} J}

Similar questions